1 code implementation • 7 May 2024 • Pedro O. Pinheiro, Arian Jamasb, Omar Mahmood, Vishnu Sresht, Saeed Saremi
We present VoxBind, a new score-based generative model for 3D molecules conditioned on protein structures.
1 code implementation • NeurIPS 2023 • Ryan-Rhys Griffiths, Leo Klarner, Henry B. Moss, Aditya Ravuri, Sang Truong, Samuel Stanton, Gary Tom, Bojana Rankovic, Yuanqi Du, Arian Jamasb, Aryan Deshwal, Julius Schwartz, Austin Tripp, Gregory Kell, Simon Frieder, Anthony Bourached, Alex Chan, Jacob Moss, Chengzhi Guo, Johannes Durholt, Saudamini Chaurasia, Felix Strieth-Kalthoff, Alpha A. Lee, Bingqing Cheng, Alán Aspuru-Guzik, Philippe Schwaller, Jian Tang
By defining such kernels in GAUCHE, we seek to open the door to powerful tools for uncertainty quantification and Bayesian optimisation in chemistry.
2 code implementations • 24 Oct 2022 • Arne Schneuing, Charles Harris, Yuanqi Du, Kieran Didi, Arian Jamasb, Ilia Igashov, Weitao Du, Carla Gomes, Tom Blundell, Pietro Lio, Max Welling, Michael Bronstein, Bruno Correia
Here we show how a single pre-trained diffusion model can be applied to a broader range of problems, such as off-the-shelf property optimization, explicit negative design, and partial molecular design with inpainting.
2 code implementations • 11 Mar 2022 • Zuobai Zhang, Minghao Xu, Arian Jamasb, Vijil Chenthamarakshan, Aurelie Lozano, Payel Das, Jian Tang
Despite the effectiveness of sequence-based approaches, the power of pretraining on known protein structures, which are available in smaller numbers only, has not been explored for protein property prediction, though protein structures are known to be determinants of protein function.