1 code implementation • 10 Feb 2025 • Pawel Renc, Michal K. Grzeszczyk, Nassim Oufattole, Deirdre Goode, Yugang Jia, Szymon Bieganski, Matthew B. A. McDermott, Jaroslaw Was, Anthony E. Samir, Jonathan W. Cunningham, David W. Bates, Arkadiusz Sitek
We processed 299, 721 unique patients from MIMIC-IV into 285, 622 PHTs, with 60% including hospital admissions.
1 code implementation • 11 Sep 2024 • Michal K. Grzeszczyk, Przemysław Korzeniowski, Samer Alabed, Andrew J. Swift, Tomasz Trzciński, Arkadiusz Sitek
We test TabMixer for mPAP estimation and show that it enhances the performance of Convolutional Neural Networks, 3D-MLP and Vision Transformers while being competitive with previous modules for imaging and tabular data.
1 code implementation • 30 Jul 2024 • Pawel Renc, Yugang Jia, Anthony E. Samir, Jaroslaw Was, Quanzheng Li, David W. Bates, Arkadiusz Sitek
Integrating modern machine learning and clinical decision-making has great promise for mitigating healthcare's increasing cost and complexity.
1 code implementation • 12 Jul 2024 • Tomasz Szczepański, Michal K. Grzeszczyk, Szymon Płotka, Arleta Adamowicz, Piotr Fudalej, Przemysław Korzeniowski, Tomasz Trzciński, Arkadiusz Sitek
When labels are not available during inference, our model infers the necessary conditioning embedding directly from the input data, thanks to a feed-forward network learned during the training phase.
no code implementations • 8 Feb 2024 • Kelly Payette, Céline Steger, Roxane Licandro, Priscille de Dumast, Hongwei Bran Li, Matthew Barkovich, Liu Li, Maik Dannecker, Chen Chen, Cheng Ouyang, Niccolò McConnell, Alina Miron, Yongmin Li, Alena Uus, Irina Grigorescu, Paula Ramirez Gilliland, Md Mahfuzur Rahman Siddiquee, Daguang Xu, Andriy Myronenko, Haoyu Wang, Ziyan Huang, Jin Ye, Mireia Alenyà, Valentin Comte, Oscar Camara, Jean-Baptiste Masson, Astrid Nilsson, Charlotte Godard, Moona Mazher, Abdul Qayyum, Yibo Gao, Hangqi Zhou, Shangqi Gao, Jia Fu, Guiming Dong, Guotai Wang, ZunHyan Rieu, HyeonSik Yang, Minwoo Lee, Szymon Płotka, Michal K. Grzeszczyk, Arkadiusz Sitek, Luisa Vargas Daza, Santiago Usma, Pablo Arbelaez, Wenying Lu, WenHao Zhang, Jing Liang, Romain Valabregue, Anand A. Joshi, Krishna N. Nayak, Richard M. Leahy, Luca Wilhelmi, Aline Dändliker, Hui Ji, Antonio G. Gennari, Anton Jakovčić, Melita Klaić, Ana Adžić, Pavel Marković, Gracia Grabarić, Gregor Kasprian, Gregor Dovjak, Milan Rados, Lana Vasung, Meritxell Bach Cuadra, Andras Jakab
The FeTA Challenge 2022 was able to successfully evaluate and advance generalizability of multi-class fetal brain tissue segmentation algorithms for MRI and it continues to benchmark new algorithms.
1 code implementation • 10 Jan 2024 • Michal K. Grzeszczyk, Tomasz Trzciński, Arkadiusz Sitek
In this work, we present a novel, machine-learning approach for constructing Multiclass Interpretable Scoring Systems (MISS) - a fully data-driven methodology for generating single, sparse, and user-friendly scoring systems for multiclass classification problems.
no code implementations • 21 Dec 2023 • Michal K. Grzeszczyk, Tadeusz Satlawa, Angela Lungu, Andrew Swift, Andrew Narracott, Rod Hose, Tomasz Trzcinski, Arkadiusz Sitek
We show using the ablation study, that physics-informed feature engineering based on models of blood circulation increases the performance of Gradient Boosting Decision Trees-based algorithms for classification of PH and regression of values of mPAP.
no code implementations • 21 Dec 2023 • Michal K. Grzeszczyk, Anna Lisowska, Arkadiusz Sitek, Aneta Lisowska
Automatic detection and tracking of emotional states has the potential for helping individuals with various mental health conditions.
1 code implementation • 27 Oct 2023 • Michal K. Grzeszczyk, Szymon Płotka, Beata Rebizant, Katarzyna Kosińska-Kaczyńska, Michał Lipa, Robert Brawura-Biskupski-Samaha, Przemysław Korzeniowski, Tomasz Trzciński, Arkadiusz Sitek
In this paper, we introduce TabAttention, a novel module that enhances the performance of Convolutional Neural Networks (CNNs) with an attention mechanism that is trained conditionally on tabular data.
no code implementations • 7 Feb 2023 • Michal K. Grzeszczyk, Paulina Adamczyk, Sylwia Marek, Ryszard Pręcikowski, Maciej Kuś, M. Patrycja Lelujko, Rosmary Blanco, Tomasz Trzciński, Arkadiusz Sitek, Maciej Malawski, Aneta Lisowska
The effectiveness of digital treatments can be measured by requiring patients to self-report their state through applications, however, it can be overwhelming and causes disengagement.
no code implementations • 6 Sep 2022 • Michal K. Grzeszczyk, Szymon Płotka, Arkadiusz Sitek
Cardiac Magnetic Resonance Imaging is commonly used for the assessment of the cardiac anatomy and function.
no code implementations • 30 Jul 2022 • Przemysław Korzeniowski, Szymon Płotka, Robert Brawura-Biskupski-Samaha, Arkadiusz Sitek
Spina Bifida (SB) is a birth defect developed during the early stage of pregnancy in which there is incomplete closing of the spine around the spinal cord.
1 code implementation • 24 Jun 2022 • Sophia Bano, Alessandro Casella, Francisco Vasconcelos, Abdul Qayyum, Abdesslam Benzinou, Moona Mazher, Fabrice Meriaudeau, Chiara Lena, Ilaria Anita Cintorrino, Gaia Romana De Paolis, Jessica Biagioli, Daria Grechishnikova, Jing Jiao, Bizhe Bai, Yanyan Qiao, Binod Bhattarai, Rebati Raman Gaire, Ronast Subedi, Eduard Vazquez, Szymon Płotka, Aneta Lisowska, Arkadiusz Sitek, George Attilakos, Ruwan Wimalasundera, Anna L David, Dario Paladini, Jan Deprest, Elena De Momi, Leonardo S Mattos, Sara Moccia, Danail Stoyanov
For this challenge, we released a dataset of 2060 images, pixel-annotated for vessels, tool, fetus and background classes, from 18 in-vivo TTTS fetoscopy procedures and 18 short video clips.
1 code implementation • 27 May 2022 • Szymon Płotka, Adam Klasa, Aneta Lisowska, Joanna Seliga-Siwecka, Michał Lipa, Tomasz Trzciński, Arkadiusz Sitek
We found that automated fetal biometric measurements obtained by FUVAI were comparable to the measurements performed by experienced sonographers The observed differences in measurement values were within the range of inter- and intra-observer variability.
1 code implementation • 19 May 2022 • Szymon Płotka, Michal K. Grzeszczyk, Robert Brawura-Biskupski-Samaha, Paweł Gutaj, Michał Lipa, Tomasz Trzciński, Arkadiusz Sitek
Predicting fetal weight at birth is an important aspect of perinatal care, particularly in the context of antenatal management, which includes the planned timing and the mode of delivery.
1 code implementation • 23 Jan 2022 • Tomasz Szczepański, Arkadiusz Sitek, Tomasz Trzciński, Szymon Płotka
We show that our proposed method is more robust than previous attempts to counter confounding factors such as ECG leads in chest X-rays that often influence model classification decisions.
1 code implementation • 14 Jul 2021 • Szymon Płotka, Tomasz Włodarczyk, Adam Klasa, Michał Lipa, Arkadiusz Sitek, Tomasz Trzciński
The main goal in fetal ultrasound scan video analysis is to find proper standard planes to measure the fetal head, abdomen and femur.
no code implementations • 14 Jul 2021 • Arkadiusz Sitek, Sangtae Ahn, Evren Asma, Adam Chandler, Alvin Ihsani, Sven Prevrhal, Arman Rahmim, Babak Saboury, Kris Thielemans
Artificial intelligence (AI) has significant potential to positively impact and advance medical imaging, including positron emission tomography (PET) imaging applications.
no code implementations • 14 Nov 2020 • Benedikt Graf, Arkadiusz Sitek, Amin Katouzian, Yen-Fu Lu, Arun Krishnan, Justin Rafael, Kirstin Small, Yiting Xie
Chest x-ray imaging is widely used for the diagnosis of pneumothorax and there has been significant interest in developing automated methods to assist in image interpretation.
no code implementations • 3 Apr 2020 • Manikanta Srikar Yellapragada, Yiting Xie, Benedikt Graf, David Richmond, Arun Krishnan, Arkadiusz Sitek
Acute aortic syndrome (AAS) is a group of life threatening conditions of the aorta.
no code implementations • 28 Nov 2019 • Skylar W. Wurster, Arkadiusz Sitek, Jian Chen, Karla Evans, Gaeun Kim, Jeremy M. Wolfe
Radiologists can classify a mammogram as normal or abnormal at better than chance levels after less than a second's exposure to the images.
no code implementations • 19 Jul 2017 • Xiang Li, Aoxiao Zhong, Ming Lin, Ning Guo, Mu Sun, Arkadiusz Sitek, Jieping Ye, James Thrall, Quanzheng Li
However, the development of a robust and reliable deep learning model for computer-aided diagnosis is still highly challenging due to the combination of the high heterogeneity in the medical images and the relative lack of training samples.
no code implementations • 29 May 2017 • Songting Shi, Xiang Li, Arkadiusz Sitek, Quanzheng Li
In this article, we derive a Bayesian model to learning the sparse and low rank PARAFAC decomposition for the observed tensor with missing values via the elastic net, with property to find the true rank and sparse factor matrix which is robust to the noise.