Search Results for author: Armel Zebaze

Found 6 papers, 5 papers with code

In-Context Example Selection via Similarity Search Improves Low-Resource Machine Translation

1 code implementation1 Aug 2024 Armel Zebaze, Benoît Sagot, Rachel Bawden

However no systematic studies have been published on how best to select examples, and mixed results have been reported on the usefulness of similarity-based selection over random selection.

Diversity In-Context Learning +5

mOSCAR: A Large-scale Multilingual and Multimodal Document-level Corpus

no code implementations13 Jun 2024 Matthieu Futeral, Armel Zebaze, Pedro Ortiz Suarez, Julien Abadji, Rémi Lacroix, Cordelia Schmid, Rachel Bawden, Benoît Sagot

We additionally train two types of multilingual model to prove the benefits of mOSCAR: (1) a model trained on a subset of mOSCAR and captioning data and (2) a model train on captioning data only.

Few-Shot Learning In-Context Learning

Astraios: Parameter-Efficient Instruction Tuning Code Large Language Models

2 code implementations1 Jan 2024 Terry Yue Zhuo, Armel Zebaze, Nitchakarn Suppattarachai, Leandro von Werra, Harm de Vries, Qian Liu, Niklas Muennighoff

Through investigations across 5 tasks and 8 different datasets encompassing both code comprehension and code generation tasks, we find that FFT generally leads to the best downstream performance across all scales, and PEFT methods differ significantly in their efficacy based on the model scale.

Code Generation parameter-efficient fine-tuning

OctoPack: Instruction Tuning Code Large Language Models

3 code implementations14 Aug 2023 Niklas Muennighoff, Qian Liu, Armel Zebaze, Qinkai Zheng, Binyuan Hui, Terry Yue Zhuo, Swayam Singh, Xiangru Tang, Leandro von Werra, Shayne Longpre

We benchmark CommitPack against other natural and synthetic code instructions (xP3x, Self-Instruct, OASST) on the 16B parameter StarCoder model, and achieve state-of-the-art performance among models not trained on OpenAI outputs, on the HumanEval Python benchmark (46. 2% pass@1).

Code Generation Code Repair

StarCoder: may the source be with you!

4 code implementations9 May 2023 Raymond Li, Loubna Ben allal, Yangtian Zi, Niklas Muennighoff, Denis Kocetkov, Chenghao Mou, Marc Marone, Christopher Akiki, Jia Li, Jenny Chim, Qian Liu, Evgenii Zheltonozhskii, Terry Yue Zhuo, Thomas Wang, Olivier Dehaene, Mishig Davaadorj, Joel Lamy-Poirier, João Monteiro, Oleh Shliazhko, Nicolas Gontier, Nicholas Meade, Armel Zebaze, Ming-Ho Yee, Logesh Kumar Umapathi, Jian Zhu, Benjamin Lipkin, Muhtasham Oblokulov, Zhiruo Wang, Rudra Murthy, Jason Stillerman, Siva Sankalp Patel, Dmitry Abulkhanov, Marco Zocca, Manan Dey, Zhihan Zhang, Nour Fahmy, Urvashi Bhattacharyya, Wenhao Yu, Swayam Singh, Sasha Luccioni, Paulo Villegas, Maxim Kunakov, Fedor Zhdanov, Manuel Romero, Tony Lee, Nadav Timor, Jennifer Ding, Claire Schlesinger, Hailey Schoelkopf, Jan Ebert, Tri Dao, Mayank Mishra, Alex Gu, Jennifer Robinson, Carolyn Jane Anderson, Brendan Dolan-Gavitt, Danish Contractor, Siva Reddy, Daniel Fried, Dzmitry Bahdanau, Yacine Jernite, Carlos Muñoz Ferrandis, Sean Hughes, Thomas Wolf, Arjun Guha, Leandro von Werra, Harm de Vries

The BigCode community, an open-scientific collaboration working on the responsible development of Large Language Models for Code (Code LLMs), introduces StarCoder and StarCoderBase: 15. 5B parameter models with 8K context length, infilling capabilities and fast large-batch inference enabled by multi-query attention.

8k Code Generation

Cannot find the paper you are looking for? You can Submit a new open access paper.