1 code implementation • NeurIPS 2023 • Daniel Y. Fu, Simran Arora, Jessica Grogan, Isys Johnson, Sabri Eyuboglu, Armin W. Thomas, Benjamin Spector, Michael Poli, Atri Rudra, Christopher Ré
We ask: are there performant architectures that can scale sub-quadratically along sequence length and model dimension?
1 code implementation • 13 Feb 2023 • Daniel Y. Fu, Elliot L. Epstein, Eric Nguyen, Armin W. Thomas, Michael Zhang, Tri Dao, Atri Rudra, Christopher Ré
We find that a key requirement to achieving high performance is keeping the convolution kernels smooth.
3 code implementations • 28 Dec 2022 • Daniel Y. Fu, Tri Dao, Khaled K. Saab, Armin W. Thomas, Atri Rudra, Christopher Ré
First, we use synthetic language modeling tasks to understand the gap between SSMs and attention.
Ranked #2 on Language Modelling on The Pile (Test perplexity metric)
1 code implementation • 22 Jun 2022 • Armin W. Thomas, Christopher Ré, Russell A. Poldrack
At their core, these frameworks learn the dynamics of brain activity by modeling sequences of activity akin to how sequences of text are modeled in NLP.
1 code implementation • 31 May 2022 • Rastko Ciric, Armin W. Thomas, Oscar Esteban, Russell A. Poldrack
We introduce a new analytic paradigm and software toolbox that implements common operations used in functional connectomics as fully differentiable processing blocks.
no code implementations • 31 May 2022 • Armin W. Thomas, Christopher Ré, Russell A. Poldrack
Deep learning (DL) models find increasing application in mental state decoding, where researchers seek to understand the mapping between mental states (e. g., perceiving fear or joy) and brain activity by identifying those brain regions (and networks) whose activity allows to accurately identify (i. e., decode) these states.
1 code implementation • 1 Nov 2021 • Armin W. Thomas, Ulman Lindenberger, Wojciech Samek, Klaus-Robert Müller
Here, we systematically evaluate TL for the application of DL models to the decoding of cognitive states (e. g., viewing images of faces or houses) from whole-brain functional Magnetic Resonance Imaging (fMRI) data.
no code implementations • 16 Aug 2021 • Armin W. Thomas, Christopher Ré, Russell A. Poldrack
In cognitive decoding, researchers aim to characterize a brain region's representations by identifying the cognitive states (e. g., accepting/rejecting a gamble) that can be identified from the region's activity.
2 code implementations • 16 Aug 2021 • Rishi Bommasani, Drew A. Hudson, Ehsan Adeli, Russ Altman, Simran Arora, Sydney von Arx, Michael S. Bernstein, Jeannette Bohg, Antoine Bosselut, Emma Brunskill, Erik Brynjolfsson, Shyamal Buch, Dallas Card, Rodrigo Castellon, Niladri Chatterji, Annie Chen, Kathleen Creel, Jared Quincy Davis, Dora Demszky, Chris Donahue, Moussa Doumbouya, Esin Durmus, Stefano Ermon, John Etchemendy, Kawin Ethayarajh, Li Fei-Fei, Chelsea Finn, Trevor Gale, Lauren Gillespie, Karan Goel, Noah Goodman, Shelby Grossman, Neel Guha, Tatsunori Hashimoto, Peter Henderson, John Hewitt, Daniel E. Ho, Jenny Hong, Kyle Hsu, Jing Huang, Thomas Icard, Saahil Jain, Dan Jurafsky, Pratyusha Kalluri, Siddharth Karamcheti, Geoff Keeling, Fereshte Khani, Omar Khattab, Pang Wei Koh, Mark Krass, Ranjay Krishna, Rohith Kuditipudi, Ananya Kumar, Faisal Ladhak, Mina Lee, Tony Lee, Jure Leskovec, Isabelle Levent, Xiang Lisa Li, Xuechen Li, Tengyu Ma, Ali Malik, Christopher D. Manning, Suvir Mirchandani, Eric Mitchell, Zanele Munyikwa, Suraj Nair, Avanika Narayan, Deepak Narayanan, Ben Newman, Allen Nie, Juan Carlos Niebles, Hamed Nilforoshan, Julian Nyarko, Giray Ogut, Laurel Orr, Isabel Papadimitriou, Joon Sung Park, Chris Piech, Eva Portelance, Christopher Potts, aditi raghunathan, Rob Reich, Hongyu Ren, Frieda Rong, Yusuf Roohani, Camilo Ruiz, Jack Ryan, Christopher Ré, Dorsa Sadigh, Shiori Sagawa, Keshav Santhanam, Andy Shih, Krishnan Srinivasan, Alex Tamkin, Rohan Taori, Armin W. Thomas, Florian Tramèr, Rose E. Wang, William Wang, Bohan Wu, Jiajun Wu, Yuhuai Wu, Sang Michael Xie, Michihiro Yasunaga, Jiaxuan You, Matei Zaharia, Michael Zhang, Tianyi Zhang, Xikun Zhang, Yuhui Zhang, Lucia Zheng, Kaitlyn Zhou, Percy Liang
AI is undergoing a paradigm shift with the rise of models (e. g., BERT, DALL-E, GPT-3) that are trained on broad data at scale and are adaptable to a wide range of downstream tasks.
no code implementations • 2 Jul 2019 • Armin W. Thomas, Klaus-Robert Müller, Wojciech Samek
Even further, the pre-trained DL model variant is already able to correctly decode 67. 51% of the cognitive states from a test dataset with 100 individuals, when fine-tuned on a dataset of the size of only three subjects.
1 code implementation • 23 Oct 2018 • Armin W. Thomas, Hauke R. Heekeren, Klaus-Robert Müller, Wojciech Samek
We further demonstrate DeepLight's ability to study the fine-grained temporo-spatial variability of brain activity over sequences of single fMRI samples.