Search Results for author: Arnd Dörfler

Found 11 papers, 1 papers with code

Risk Classification of Brain Metastases via Radiomics, Delta-Radiomics and Machine Learning

no code implementations17 Feb 2023 Philipp Sommer, Yixing Huang, Christoph Bert, Andreas Maier, Manuel Schmidt, Arnd Dörfler, Rainer Fietkau, Florian Putz

We hypothesized that using radiomics and machine learning (ML), metastases at high risk for subsequent progression could be identified during follow-up prior to the onset of significant tumor growth, enabling personalized follow-up intervals and early selection for salvage treatment.

Continual Learning for Peer-to-Peer Federated Learning: A Study on Automated Brain Metastasis Identification

no code implementations26 Apr 2022 Yixing Huang, Christoph Bert, Stefan Fischer, Manuel Schmidt, Arnd Dörfler, Andreas Maier, Rainer Fietkau, Florian Putz

With iterative continual learning (i. e., the shared model revisits each center multiple times during training), the sensitivity is further improved to 0. 914, which is identical to the sensitivity using mixed data for training.

Continual Learning Federated Learning

Deep learning for brain metastasis detection and segmentation in longitudinal MRI data

1 code implementation22 Dec 2021 Yixing Huang, Christoph Bert, Philipp Sommer, Benjamin Frey, Udo Gaipl, Luitpold V. Distel, Thomas Weissmann, Michael Uder, Manuel A. Schmidt, Arnd Dörfler, Andreas Maier, Rainer Fietkau, Florian Putz

To improve brain metastasis detection performance with deep learning, a custom detection loss called volume-level sensitivity-specificity (VSS) is proposed, which rates individual metastasis detection sensitivity and specificity in (sub-)volume levels.

Ensemble Learning Specificity

Projection-to-Projection Translation for Hybrid X-ray and Magnetic Resonance Imaging

no code implementations19 Nov 2019 Bernhard Stimpel, Christopher Syben, Tobias Würfl, Katharina Breininger, Philipp Hoelter, Arnd Dörfler, Andreas Maier

Additionally, a weighting scheme in the loss computation that favors high-frequency structures is proposed to focus on the important details and contours in projection imaging.

Image Enhancement Translation

Deriving Neural Network Architectures using Precision Learning: Parallel-to-fan beam Conversion

no code implementations9 Jul 2018 Christopher Syben, Bernhard Stimpel, Jonathan Lommen, Tobias Würfl, Arnd Dörfler, Andreas Maier

The results demonstrate that the proposed method is superior to ray-by-ray interpolation and is able to deliver sharper images using the same amount of parallel-beam input projections which is crucial for interventional applications.

MR to X-Ray Projection Image Synthesis

no code implementations20 Oct 2017 Bernhard Stimpel, Christopher Syben, Tobias Würfl, Katrin Mentl, Arnd Dörfler, Andreas Maier

The perceptual-loss showed to be able to preserve most of the high-frequency details in the projection images and, thus, is recommended for the underlying task and similar problems.

Image-to-Image Translation Translation

Precision Learning: Reconstruction Filter Kernel Discretization

no code implementations17 Oct 2017 Christopher Syben, Bernhard Stimpel, Katharina Breininger, Tobias Würfl, Rebecca Fahrig, Arnd Dörfler, Andreas Maier

In this paper, we present substantial evidence that a deep neural network will intrinsically learn the appropriate way to discretize the ideal continuous reconstruction filter.

Deep Learning

Cannot find the paper you are looking for? You can Submit a new open access paper.