no code implementations • 19 Jun 2025 • Salvatore Esposito, Daniel Rebain, Arno Onken, Changjian Li, Oisin Mac Aodha
Accurate segmentation of vascular networks from sparse CT scan slices remains a significant challenge in medical imaging, particularly due to the thin, branching nature of vessels and the inherent sparsity between imaging planes.
1 code implementation • 20 Dec 2024 • Eddie L. Ungless, Nikolas Vitsakis, Zeerak Talat, James Garforth, Björn Ross, Arno Onken, Atoosa Kasirzadeh, Alexandra Birch
'LLM Ethics Whitepaper' distils a thorough literature review into clear Do's and Don'ts, which we present also in this paper.
no code implementations • CVPR 2025 • Thomas Walker, Salvatore Esposito, Daniel Rebain, Amir Vaxman, Arno Onken, Changjian Li, Oisin Mac Aodha
Reconstructing complex structures from planar cross-sections is a challenging problem, with wide-reaching applications in medical imaging, manufacturing, and topography.
1 code implementation • 17 Oct 2024 • Eddie L. Ungless, Nikolas Vitsakis, Zeerak Talat, James Garforth, Björn Ross, Arno Onken, Atoosa Kasirzadeh, Alexandra Birch
This whitepaper offers an overview of the ethical considerations surrounding research into or with large language models (LLMs).
2 code implementations • 12 Jul 2024 • Polina Turishcheva, Paul G. Fahey, Michaela Vystrčilová, Laura Hansel, Rachel Froebe, Kayla Ponder, Yongrong Qiu, Konstantin F. Willeke, Mohammad Bashiri, Ruslan Baikulov, Yu Zhu, Lei Ma, Shan Yu, Tiejun Huang, Bryan M. Li, Wolf De Wulf, Nina Kudryashova, Matthias H. Hennig, Nathalie L. Rochefort, Arno Onken, Eric Wang, Zhiwei Ding, Andreas S. Tolias, Fabian H. Sinz, Alexander S Ecker
To address this gap, we established the Sensorium 2023 Benchmark Competition with dynamic input, featuring a new large-scale dataset from the primary visual cortex of ten mice.
no code implementations • 6 Jun 2024 • Salvatore Esposito, Qingshan Xu, Kacper Kania, Charlie Hewitt, Octave Mariotti, Lohit Petikam, Julien Valentin, Arno Onken, Oisin Mac Aodha
We introduce a new generative approach for synthesizing 3D geometry and images from single-view collections.
1 code implementation • 6 Feb 2023 • Bryan M. Li, Isabel M. Cornacchia, Nathalie L. Rochefort, Arno Onken
Accurate predictive models of the visual cortex neural response to natural visual stimuli remain a challenge in computational neuroscience.
no code implementations • 11 Jul 2022 • Lazaros Mitskopoulos, Theoklitos Amvrosiadis, Arno Onken
Recordings of complex neural population responses provide a unique opportunity for advancing our understanding of neural information processing at multiple scales and improving performance of brain computer interfaces.
no code implementations • 25 Nov 2021 • Bryan M. Li, Theoklitos Amvrosiadis, Nathalie Rochefort, Arno Onken
We develop an end-to-end pipeline to preprocess, train and evaluate calcium fluorescence signals, and a procedure to interpret the resulting deep learning models.
no code implementations • 3 Feb 2021 • Cole Hurwitz, Nina Kudryashova, Arno Onken, Matthias H. Hennig
Modern recording technologies now enable simultaneous recording from large numbers of neurons.
1 code implementation • 1 Jan 2021 • Bryan M. Li, Theoklitos Amvrosiadis, Nathalie Rochefort, Arno Onken
Calcium imaging has become a powerful and popular technique to monitor the activity of large populations of neurons in vivo.
1 code implementation • 6 Sep 2020 • Bryan M. Li, Theoklitos Amvrosiadis, Nathalie Rochefort, Arno Onken
Here, we propose a Generative Adversarial Network (GAN) model to generate realistic calcium signals as seen in neuronal somata with calcium imaging.
no code implementations • 3 Aug 2020 • Nina Kudryashova, Theoklitos Amvrosiadis, Nathalie Dupuy, Nathalie Rochefort, Arno Onken
When the exact density estimation with a parametric model is not possible, our Copula-GP model is still able to provide reasonable information estimates, close to the ground truth and comparable to those obtained with a neural network estimator.
1 code implementation • ICLR 2020 • Bennet Breier, Arno Onken
After correction, our best CNN beats the SVM by 6. 12%, achieving a classification accuracy of 96. 32%.
no code implementations • 12 Aug 2018 • Shanshan Jia, Zhaofei Yu, Arno Onken, Yonghong Tian, Tiejun Huang, Jian. K. Liu
Furthermore, we show that STNMF can separate spikes of a ganglion cell into a few subsets of spikes where each subset is contributed by one presynaptic bipolar cell.
1 code implementation • ICLR 2018 • Manuel Molano-Mazon, Arno Onken, Eugenio Piasini, Stefano Panzeri
The ability to synthesize realistic patterns of neural activity is crucial for studying neural information processing.
no code implementations • ICLR 2018 • Arezoo Alizadeh, Marion Mutter, Thomas Münch, Arno Onken, Stefano Panzeri
Activity of populations of sensory neurons carries stimulus information in both the temporal and the spatial dimensions.
no code implementations • NeurIPS 2016 • Arno Onken, Stefano Panzeri
Our methods hold the promise to considerably improve statistical analysis of neural data recorded simultaneously at different scales.
no code implementations • NeurIPS 2009 • Arno Onken, Steffen Grünewälder, Klaus Obermayer
The linear correlation coefficient is typically used to characterize and analyze dependencies of neural spike counts.
no code implementations • NeurIPS 2008 • Arno Onken, Steffen Grünewälder, Matthias Munk, Klaus Obermayer
Furthermore, copulas place a wide range of dependence structures at the disposal and can be used to analyze higher order interactions.