Search Results for author: Arthur W. Toga

Found 5 papers, 2 papers with code

Multi-Modality Conditioned Variational U-Net for Field-of-View Extension in Brain Diffusion MRI

no code implementations20 Sep 2024 Zhiyuan Li, Tianyuan Yao, Praitayini Kanakaraj, Chenyu Gao, Shunxing Bao, Lianrui Zuo, Michael E. Kim, Nancy R. Newlin, Gaurav Rudravaram, Nazirah M. Khairi, Yuankai Huo, Kurt G. Schilling, Walter A. Kukull, Arthur W. Toga, Derek B. Archer, Timothy J. Hohman, Bennett A. Landman

We hypothesize that by this design the proposed framework can enhance the imputation performance of the dMRI scans and therefore be useful for repairing whole-brain tractography in corrupted dMRI scans with incomplete FOV.

Diffusion MRI Imputation

Evaluating U-net Brain Extraction for Multi-site and Longitudinal Preclinical Stroke Imaging

1 code implementation11 Mar 2022 Erendiz Tarakci, Joseph Mandeville, Fahmeed Hyder, Basavaraju G. Sanganahalli, Daniel R. Thedens, Ali Arbab, Shuning Huang, Adnan Bibic, Jelena Mihailovic, Andreia Morais, Jessica Lamb, Karisma Nagarkatti, Marcio A. Dinitz, Andre Rogatko, Arthur W. Toga, Patrick Lyden, Cenk Ayata, Ryan P. Cabeen

We consistently found high accuracy and ability of the U-net architecture to generalize performance in a range of 95-97% accuracy, with only modest reductions in performance based on lower fidelity imaging hardware and brain pathology.

The Alzheimer's Disease Prediction Of Longitudinal Evolution (TADPOLE) Challenge: Results after 1 Year Follow-up

4 code implementations9 Feb 2020 Razvan V. Marinescu, Neil P. Oxtoby, Alexandra L. Young, Esther E. Bron, Arthur W. Toga, Michael W. Weiner, Frederik Barkhof, Nick C. Fox, Arman Eshaghi, Tina Toni, Marcin Salaterski, Veronika Lunina, Manon Ansart, Stanley Durrleman, Pascal Lu, Samuel Iddi, Dan Li, Wesley K. Thompson, Michael C. Donohue, Aviv Nahon, Yarden Levy, Dan Halbersberg, Mariya Cohen, Huiling Liao, Tengfei Li, Kaixian Yu, Hongtu Zhu, Jose G. Tamez-Pena, Aya Ismail, Timothy Wood, Hector Corrada Bravo, Minh Nguyen, Nanbo Sun, Jiashi Feng, B. T. Thomas Yeo, Gang Chen, Ke Qi, Shiyang Chen, Deqiang Qiu, Ionut Buciuman, Alex Kelner, Raluca Pop, Denisa Rimocea, Mostafa M. Ghazi, Mads Nielsen, Sebastien Ourselin, Lauge Sorensen, Vikram Venkatraghavan, Keli Liu, Christina Rabe, Paul Manser, Steven M. Hill, James Howlett, Zhiyue Huang, Steven Kiddle, Sach Mukherjee, Anais Rouanet, Bernd Taschler, Brian D. M. Tom, Simon R. White, Noel Faux, Suman Sedai, Javier de Velasco Oriol, Edgar E. V. Clemente, Karol Estrada, Leon Aksman, Andre Altmann, Cynthia M. Stonnington, Yalin Wang, Jianfeng Wu, Vivek Devadas, Clementine Fourrier, Lars Lau Raket, Aristeidis Sotiras, Guray Erus, Jimit Doshi, Christos Davatzikos, Jacob Vogel, Andrew Doyle, Angela Tam, Alex Diaz-Papkovich, Emmanuel Jammeh, Igor Koval, Paul Moore, Terry J. Lyons, John Gallacher, Jussi Tohka, Robert Ciszek, Bruno Jedynak, Kruti Pandya, Murat Bilgel, William Engels, Joseph Cole, Polina Golland, Stefan Klein, Daniel C. Alexander

TADPOLE's unique results suggest that current prediction algorithms provide sufficient accuracy to exploit biomarkers related to clinical diagnosis and ventricle volume, for cohort refinement in clinical trials for Alzheimer's disease.

Alzheimer's Disease Detection Disease Prediction +1

Cannot find the paper you are looking for? You can Submit a new open access paper.