Search Results for author: Arun Ahuja

Found 21 papers, 2 papers with code

Hierarchical reinforcement learning with natural language subgoals

no code implementations20 Sep 2023 Arun Ahuja, Kavya Kopparapu, Rob Fergus, Ishita Dasgupta

Hierarchical reinforcement learning has been a compelling approach for achieving goal directed behavior over long sequences of actions.

Hierarchical Reinforcement Learning reinforcement-learning

Collaborating with language models for embodied reasoning

no code implementations1 Feb 2023 Ishita Dasgupta, Christine Kaeser-Chen, Kenneth Marino, Arun Ahuja, Sheila Babayan, Felix Hill, Rob Fergus

On the other hand, Large Scale Language Models (LSLMs) have exhibited strong reasoning ability and the ability to to adapt to new tasks through in-context learning.

Language Modelling reinforcement-learning +1

Imitation by Predicting Observations

no code implementations8 Jul 2021 Andrew Jaegle, Yury Sulsky, Arun Ahuja, Jake Bruce, Rob Fergus, Greg Wayne

Imitation learning enables agents to reuse and adapt the hard-won expertise of others, offering a solution to several key challenges in learning behavior.

Continuous Control Imitation Learning

Behavior Priors for Efficient Reinforcement Learning

no code implementations27 Oct 2020 Dhruva Tirumala, Alexandre Galashov, Hyeonwoo Noh, Leonard Hasenclever, Razvan Pascanu, Jonathan Schwarz, Guillaume Desjardins, Wojciech Marian Czarnecki, Arun Ahuja, Yee Whye Teh, Nicolas Heess

In this work we consider how information and architectural constraints can be combined with ideas from the probabilistic modeling literature to learn behavior priors that capture the common movement and interaction patterns that are shared across a set of related tasks or contexts.

Continuous Control Hierarchical Reinforcement Learning +3

Probing Emergent Semantics in Predictive Agents via Question Answering

no code implementations ICML 2020 Abhishek Das, Federico Carnevale, Hamza Merzic, Laura Rimell, Rosalia Schneider, Josh Abramson, Alden Hung, Arun Ahuja, Stephen Clark, Gregory Wayne, Felix Hill

Recent work has shown how predictive modeling can endow agents with rich knowledge of their surroundings, improving their ability to act in complex environments.

Question Answering

Catch & Carry: Reusable Neural Controllers for Vision-Guided Whole-Body Tasks

no code implementations15 Nov 2019 Josh Merel, Saran Tunyasuvunakool, Arun Ahuja, Yuval Tassa, Leonard Hasenclever, Vu Pham, Tom Erez, Greg Wayne, Nicolas Heess

We address the longstanding challenge of producing flexible, realistic humanoid character controllers that can perform diverse whole-body tasks involving object interactions.

Exploiting Hierarchy for Learning and Transfer in KL-regularized RL

no code implementations18 Mar 2019 Dhruva Tirumala, Hyeonwoo Noh, Alexandre Galashov, Leonard Hasenclever, Arun Ahuja, Greg Wayne, Razvan Pascanu, Yee Whye Teh, Nicolas Heess

As reinforcement learning agents are tasked with solving more challenging and diverse tasks, the ability to incorporate prior knowledge into the learning system and to exploit reusable structure in solution space is likely to become increasingly important.

Continuous Control reinforcement-learning +1

Neural probabilistic motor primitives for humanoid control

no code implementations ICLR 2019 Josh Merel, Leonard Hasenclever, Alexandre Galashov, Arun Ahuja, Vu Pham, Greg Wayne, Yee Whye Teh, Nicolas Heess

We focus on the problem of learning a single motor module that can flexibly express a range of behaviors for the control of high-dimensional physically simulated humanoids.

Humanoid Control

Experience Replay for Continual Learning

no code implementations ICLR 2019 David Rolnick, Arun Ahuja, Jonathan Schwarz, Timothy P. Lillicrap, Greg Wayne

We examine this issue in the context of reinforcement learning, in a setting where an agent is exposed to tasks in a sequence.

Continual Learning

Probing Physics Knowledge Using Tools from Developmental Psychology

no code implementations3 Apr 2018 Luis Piloto, Ari Weinstein, Dhruva TB, Arun Ahuja, Mehdi Mirza, Greg Wayne, David Amos, Chia-Chun Hung, Matt Botvinick

While some work on this problem has taken the approach of building in components such as ready-made physics engines, other research aims to extract general physical concepts directly from sensory data.

Cannot find the paper you are looking for? You can Submit a new open access paper.