no code implementations • 20 Sep 2023 • Arun Ahuja, Kavya Kopparapu, Rob Fergus, Ishita Dasgupta
Hierarchical reinforcement learning has been a compelling approach for achieving goal directed behavior over long sequences of actions.
no code implementations • 1 Feb 2023 • Ishita Dasgupta, Christine Kaeser-Chen, Kenneth Marino, Arun Ahuja, Sheila Babayan, Felix Hill, Rob Fergus
On the other hand, Large Scale Language Models (LSLMs) have exhibited strong reasoning ability and the ability to to adapt to new tasks through in-context learning.
no code implementations • 29 Jan 2023 • Theodore Sumers, Kenneth Marino, Arun Ahuja, Rob Fergus, Ishita Dasgupta
Instruction-following agents must ground language into their observation and action spaces.
no code implementations • 21 Nov 2022 • Josh Abramson, Arun Ahuja, Federico Carnevale, Petko Georgiev, Alex Goldin, Alden Hung, Jessica Landon, Jirka Lhotka, Timothy Lillicrap, Alistair Muldal, George Powell, Adam Santoro, Guy Scully, Sanjana Srivastava, Tamara von Glehn, Greg Wayne, Nathaniel Wong, Chen Yan, Rui Zhu
Here we demonstrate how to use reinforcement learning from human feedback (RLHF) to improve upon simulated, embodied agents trained to a base level of competency with imitation learning.
no code implementations • 31 Oct 2022 • Manzil Zaheer, Kenneth Marino, Will Grathwohl, John Schultz, Wendy Shang, Sheila Babayan, Arun Ahuja, Ishita Dasgupta, Christine Kaeser-Chen, Rob Fergus
A fundamental ability of an intelligent web-based agent is seeking out and acquiring new information.
no code implementations • 26 May 2022 • Josh Abramson, Arun Ahuja, Federico Carnevale, Petko Georgiev, Alex Goldin, Alden Hung, Jessica Landon, Timothy Lillicrap, Alistair Muldal, Blake Richards, Adam Santoro, Tamara von Glehn, Greg Wayne, Nathaniel Wong, Chen Yan
Creating agents that can interact naturally with humans is a common goal in artificial intelligence (AI) research.
no code implementations • 7 Dec 2021 • DeepMind Interactive Agents Team, Josh Abramson, Arun Ahuja, Arthur Brussee, Federico Carnevale, Mary Cassin, Felix Fischer, Petko Georgiev, Alex Goldin, Mansi Gupta, Tim Harley, Felix Hill, Peter C Humphreys, Alden Hung, Jessica Landon, Timothy Lillicrap, Hamza Merzic, Alistair Muldal, Adam Santoro, Guy Scully, Tamara von Glehn, Greg Wayne, Nathaniel Wong, Chen Yan, Rui Zhu
A common vision from science fiction is that robots will one day inhabit our physical spaces, sense the world as we do, assist our physical labours, and communicate with us through natural language.
no code implementations • 8 Jul 2021 • Andrew Jaegle, Yury Sulsky, Arun Ahuja, Jake Bruce, Rob Fergus, Greg Wayne
Imitation learning enables agents to reuse and adapt the hard-won expertise of others, offering a solution to several key challenges in learning behavior.
no code implementations • 10 Dec 2020 • Josh Abramson, Arun Ahuja, Iain Barr, Arthur Brussee, Federico Carnevale, Mary Cassin, Rachita Chhaparia, Stephen Clark, Bogdan Damoc, Andrew Dudzik, Petko Georgiev, Aurelia Guy, Tim Harley, Felix Hill, Alden Hung, Zachary Kenton, Jessica Landon, Timothy Lillicrap, Kory Mathewson, Soňa Mokrá, Alistair Muldal, Adam Santoro, Nikolay Savinov, Vikrant Varma, Greg Wayne, Duncan Williams, Nathaniel Wong, Chen Yan, Rui Zhu
These evaluations convincingly demonstrate that interactive training and auxiliary losses improve agent behaviour beyond what is achieved by supervised learning of actions alone.
no code implementations • 27 Oct 2020 • Dhruva Tirumala, Alexandre Galashov, Hyeonwoo Noh, Leonard Hasenclever, Razvan Pascanu, Jonathan Schwarz, Guillaume Desjardins, Wojciech Marian Czarnecki, Arun Ahuja, Yee Whye Teh, Nicolas Heess
In this work we consider how information and architectural constraints can be combined with ideas from the probabilistic modeling literature to learn behavior priors that capture the common movement and interaction patterns that are shared across a set of related tasks or contexts.
no code implementations • ICML 2020 • Abhishek Das, Federico Carnevale, Hamza Merzic, Laura Rimell, Rosalia Schneider, Josh Abramson, Alden Hung, Arun Ahuja, Stephen Clark, Gregory Wayne, Felix Hill
Recent work has shown how predictive modeling can endow agents with rich knowledge of their surroundings, improving their ability to act in complex environments.
no code implementations • 15 Nov 2019 • Josh Merel, Saran Tunyasuvunakool, Arun Ahuja, Yuval Tassa, Leonard Hasenclever, Vu Pham, Tom Erez, Greg Wayne, Nicolas Heess
We address the longstanding challenge of producing flexible, realistic humanoid character controllers that can perform diverse whole-body tasks involving object interactions.
1 code implementation • ICLR 2020 • H. Francis Song, Abbas Abdolmaleki, Jost Tobias Springenberg, Aidan Clark, Hubert Soyer, Jack W. Rae, Seb Noury, Arun Ahuja, Si-Qi Liu, Dhruva Tirumala, Nicolas Heess, Dan Belov, Martin Riedmiller, Matthew M. Botvinick
Some of the most successful applications of deep reinforcement learning to challenging domains in discrete and continuous control have used policy gradient methods in the on-policy setting.
no code implementations • 18 Mar 2019 • Dhruva Tirumala, Hyeonwoo Noh, Alexandre Galashov, Leonard Hasenclever, Arun Ahuja, Greg Wayne, Razvan Pascanu, Yee Whye Teh, Nicolas Heess
As reinforcement learning agents are tasked with solving more challenging and diverse tasks, the ability to incorporate prior knowledge into the learning system and to exploit reusable structure in solution space is likely to become increasingly important.
no code implementations • ICLR 2019 • Josh Merel, Leonard Hasenclever, Alexandre Galashov, Arun Ahuja, Vu Pham, Greg Wayne, Yee Whye Teh, Nicolas Heess
We focus on the problem of learning a single motor module that can flexibly express a range of behaviors for the control of high-dimensional physically simulated humanoids.
no code implementations • ICLR 2019 • David Rolnick, Arun Ahuja, Jonathan Schwarz, Timothy P. Lillicrap, Greg Wayne
We examine this issue in the context of reinforcement learning, in a setting where an agent is exposed to tasks in a sequence.
no code implementations • ICLR 2019 • Josh Merel, Arun Ahuja, Vu Pham, Saran Tunyasuvunakool, Si-Qi Liu, Dhruva Tirumala, Nicolas Heess, Greg Wayne
We aim to build complex humanoid agents that integrate perception, motor control, and memory.
no code implementations • 15 Oct 2018 • Chia-Chun Hung, Timothy Lillicrap, Josh Abramson, Yan Wu, Mehdi Mirza, Federico Carnevale, Arun Ahuja, Greg Wayne
Humans spend a remarkable fraction of waking life engaged in acts of "mental time travel".
no code implementations • 3 Apr 2018 • Luis Piloto, Ari Weinstein, Dhruva TB, Arun Ahuja, Mehdi Mirza, Greg Wayne, David Amos, Chia-Chun Hung, Matt Botvinick
While some work on this problem has taken the approach of building in components such as ready-made physics engines, other research aims to extract general physical concepts directly from sensory data.
1 code implementation • 28 Mar 2018 • Greg Wayne, Chia-Chun Hung, David Amos, Mehdi Mirza, Arun Ahuja, Agnieszka Grabska-Barwinska, Jack Rae, Piotr Mirowski, Joel Z. Leibo, Adam Santoro, Mevlana Gemici, Malcolm Reynolds, Tim Harley, Josh Abramson, Shakir Mohamed, Danilo Rezende, David Saxton, Adam Cain, Chloe Hillier, David Silver, Koray Kavukcuoglu, Matt Botvinick, Demis Hassabis, Timothy Lillicrap
Animals execute goal-directed behaviours despite the limited range and scope of their sensors.