10 code implementations • Preprint 2023 • OpenAI, :, Josh Achiam, Steven Adler, Sandhini Agarwal, Lama Ahmad, Ilge Akkaya, Florencia Leoni Aleman, Diogo Almeida, Janko Altenschmidt, Sam Altman, Shyamal Anadkat, Red Avila, Igor Babuschkin, Suchir Balaji, Valerie Balcom, Paul Baltescu, Haiming Bao, Mohammad Bavarian, Jeff Belgum, Irwan Bello, Jake Berdine, Gabriel Bernadett-Shapiro, Christopher Berner, Lenny Bogdonoff, Oleg Boiko, Madelaine Boyd, Anna-Luisa Brakman, Greg Brockman, Tim Brooks, Miles Brundage, Kevin Button, Trevor Cai, Rosie Campbell, Andrew Cann, Brittany Carey, Chelsea Carlson, Rory Carmichael, Brooke Chan, Che Chang, Fotis Chantzis, Derek Chen, Sully Chen, Ruby Chen, Jason Chen, Mark Chen, Ben Chess, Chester Cho, Casey Chu, Hyung Won Chung, Dave Cummings, Jeremiah Currier, Yunxing Dai, Cory Decareaux, Thomas Degry, Noah Deutsch, Damien Deville, Arka Dhar, David Dohan, Steve Dowling, Sheila Dunning, Adrien Ecoffet, Atty Eleti, Tyna Eloundou, David Farhi, Liam Fedus, Niko Felix, Simón Posada Fishman, Juston Forte, Isabella Fulford, Leo Gao, Elie Georges, Christian Gibson, Vik Goel, Tarun Gogineni, Gabriel Goh, Rapha Gontijo-Lopes, Jonathan Gordon, Morgan Grafstein, Scott Gray, Ryan Greene, Joshua Gross, Shixiang Shane Gu, Yufei Guo, Chris Hallacy, Jesse Han, Jeff Harris, Yuchen He, Mike Heaton, Johannes Heidecke, Chris Hesse, Alan Hickey, Wade Hickey, Peter Hoeschele, Brandon Houghton, Kenny Hsu, Shengli Hu, Xin Hu, Joost Huizinga, Shantanu Jain, Shawn Jain, Joanne Jang, Angela Jiang, Roger Jiang, Haozhun Jin, Denny Jin, Shino Jomoto, Billie Jonn, Heewoo Jun, Tomer Kaftan, Łukasz Kaiser, Ali Kamali, Ingmar Kanitscheider, Nitish Shirish Keskar, Tabarak Khan, Logan Kilpatrick, Jong Wook Kim, Christina Kim, Yongjik Kim, Jan Hendrik Kirchner, Jamie Kiros, Matt Knight, Daniel Kokotajlo, Łukasz Kondraciuk, Andrew Kondrich, Aris Konstantinidis, Kyle Kosic, Gretchen Krueger, Vishal Kuo, Michael Lampe, Ikai Lan, Teddy Lee, Jan Leike, Jade Leung, Daniel Levy, Chak Ming Li, Rachel Lim, Molly Lin, Stephanie Lin, Mateusz Litwin, Theresa Lopez, Ryan Lowe, Patricia Lue, Anna Makanju, Kim Malfacini, Sam Manning, Todor Markov, Yaniv Markovski, Bianca Martin, Katie Mayer, Andrew Mayne, Bob McGrew, Scott Mayer McKinney, Christine McLeavey, Paul McMillan, Jake McNeil, David Medina, Aalok Mehta, Jacob Menick, Luke Metz, Andrey Mishchenko, Pamela Mishkin, Vinnie Monaco, Evan Morikawa, Daniel Mossing, Tong Mu, Mira Murati, Oleg Murk, David Mély, Ashvin Nair, Reiichiro Nakano, Rajeev Nayak, Arvind Neelakantan, Richard Ngo, Hyeonwoo Noh, Long Ouyang, Cullen O'Keefe, Jakub Pachocki, Alex Paino, Joe Palermo, Ashley Pantuliano, Giambattista Parascandolo, Joel Parish, Emy Parparita, Alex Passos, Mikhail Pavlov, Andrew Peng, Adam Perelman, Filipe de Avila Belbute Peres, Michael Petrov, Henrique Ponde de Oliveira Pinto, Michael, Pokorny, Michelle Pokrass, Vitchyr H. Pong, Tolly Powell, Alethea Power, Boris Power, Elizabeth Proehl, Raul Puri, Alec Radford, Jack Rae, Aditya Ramesh, Cameron Raymond, Francis Real, Kendra Rimbach, Carl Ross, Bob Rotsted, Henri Roussez, Nick Ryder, Mario Saltarelli, Ted Sanders, Shibani Santurkar, Girish Sastry, Heather Schmidt, David Schnurr, John Schulman, Daniel Selsam, Kyla Sheppard, Toki Sherbakov, Jessica Shieh, Sarah Shoker, Pranav Shyam, Szymon Sidor, Eric Sigler, Maddie Simens, Jordan Sitkin, Katarina Slama, Ian Sohl, Benjamin Sokolowsky, Yang song, Natalie Staudacher, Felipe Petroski Such, Natalie Summers, Ilya Sutskever, Jie Tang, Nikolas Tezak, Madeleine B. Thompson, Phil Tillet, Amin Tootoonchian, Elizabeth Tseng, Preston Tuggle, Nick Turley, Jerry Tworek, Juan Felipe Cerón Uribe, Andrea Vallone, Arun Vijayvergiya, Chelsea Voss, Carroll Wainwright, Justin Jay Wang, Alvin Wang, Ben Wang, Jonathan Ward, Jason Wei, CJ Weinmann, Akila Welihinda, Peter Welinder, Jiayi Weng, Lilian Weng, Matt Wiethoff, Dave Willner, Clemens Winter, Samuel Wolrich, Hannah Wong, Lauren Workman, Sherwin Wu, Jeff Wu, Michael Wu, Kai Xiao, Tao Xu, Sarah Yoo, Kevin Yu, Qiming Yuan, Wojciech Zaremba, Rowan Zellers, Chong Zhang, Marvin Zhang, Shengjia Zhao, Tianhao Zheng, Juntang Zhuang, William Zhuk, Barret Zoph
We report the development of GPT-4, a large-scale, multimodal model which can accept image and text inputs and produce text outputs.
Ranked #1 on
Question Answering
on PeerQA
1 code implementation • 24 Jan 2022 • Arvind Neelakantan, Tao Xu, Raul Puri, Alec Radford, Jesse Michael Han, Jerry Tworek, Qiming Yuan, Nikolas Tezak, Jong Wook Kim, Chris Hallacy, Johannes Heidecke, Pranav Shyam, Boris Power, Tyna Eloundou Nekoul, Girish Sastry, Gretchen Krueger, David Schnurr, Felipe Petroski Such, Kenny Hsu, Madeleine Thompson, Tabarak Khan, Toki Sherbakov, Joanne Jang, Peter Welinder, Lilian Weng
Similarly to text embeddings, we train code embedding models on (text, code) pairs, obtaining a 20. 8% relative improvement over prior best work on code search.
Ranked #1 on
Passage Ranking
on MS MARCO
no code implementations • 11 Oct 2021 • Jesse Michael Han, Igor Babuschkin, Harrison Edwards, Arvind Neelakantan, Tao Xu, Stanislas Polu, Alex Ray, Pranav Shyam, Aditya Ramesh, Alec Radford, Ilya Sutskever
We show how to derive state-of-the-art unsupervised neural machine translation systems from generatively pre-trained language models.
1 code implementation • EMNLP (insights) 2020 • Prasanna Parthasarathi, Arvind Neelakantan, Sharan Narang
In this work, we begin by studying the effect of training human-human task-oriented dialogues towards improving the ability to compose multiple tasks on Transformer generative models.
65 code implementations • NeurIPS 2020 • Tom B. Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared Kaplan, Prafulla Dhariwal, Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, Sandhini Agarwal, Ariel Herbert-Voss, Gretchen Krueger, Tom Henighan, Rewon Child, Aditya Ramesh, Daniel M. Ziegler, Jeffrey Wu, Clemens Winter, Christopher Hesse, Mark Chen, Eric Sigler, Mateusz Litwin, Scott Gray, Benjamin Chess, Jack Clark, Christopher Berner, Sam McCandlish, Alec Radford, Ilya Sutskever, Dario Amodei
By contrast, humans can generally perform a new language task from only a few examples or from simple instructions - something which current NLP systems still largely struggle to do.
Ranked #1 on
Question Answering
on CoQA
(Overall metric)
no code implementations • EACL (HumEval) 2021 • Hugh Zhang, Daniel Duckworth, Daphne Ippolito, Arvind Neelakantan
For open-ended language generation tasks such as storytelling and dialogue, choosing the right decoding algorithm is critical to controlling the tradeoff between generation quality and diversity.
1 code implementation • 31 Oct 2019 • Arvind Neelakantan, Semih Yavuz, Sharan Narang, Vishaal Prasad, Ben Goodrich, Daniel Duckworth, Chinnadhurai Sankar, Xifeng Yan
In this paper, we develop Neural Assistant: a single neural network model that takes conversation history and an external knowledge source as input and jointly produces both text response and action to be taken by the system as output.
1 code implementation • IJCNLP 2019 • Bill Byrne, Karthik Krishnamoorthi, Chinnadhurai Sankar, Arvind Neelakantan, Daniel Duckworth, Semih Yavuz, Ben Goodrich, Amit Dubey, Andy Cedilnik, Kyu-Young Kim
A significant barrier to progress in data-driven approaches to building dialog systems is the lack of high quality, goal-oriented conversational data.
no code implementations • 11 Jun 2019 • Daniel Duckworth, Arvind Neelakantan, Ben Goodrich, Lukasz Kaiser, Samy Bengio
Experimentally, we find the proposed technique leads to equivalent or better performance on image generation, summarization, dialog generation, and translation compared to teacher-forced training.
no code implementations • ICLR 2019 • Aurko Roy, Ashish Vaswani, Niki Parmar, Arvind Neelakantan
Deep neural networks with discrete latent variables offer the promise of better symbolic reasoning, and learning abstractions that are more useful to new tasks.
2 code implementations • 28 May 2018 • Aurko Roy, Ashish Vaswani, Arvind Neelakantan, Niki Parmar
Deep neural networks with discrete latent variables offer the promise of better symbolic reasoning, and learning abstractions that are more useful to new tasks.
no code implementations • 22 Jun 2017 • Trapit Bansal, Arvind Neelakantan, Andrew McCallum
We introduce RelNet: a new model for relational reasoning.
2 code implementations • 28 Nov 2016 • Arvind Neelakantan, Quoc V. Le, Martin Abadi, Andrew McCallum, Dario Amodei
The main experimental result in this paper is that a single Neural Programmer model achieves 34. 2% accuracy using only 10, 000 examples with weak supervision.
2 code implementations • EACL 2017 • Rajarshi Das, Arvind Neelakantan, David Belanger, Andrew McCallum
Our goal is to combine the rich multistep inference of symbolic logical reasoning with the generalization capabilities of neural networks.
1 code implementation • EACL 2017 • Patrick Verga, Arvind Neelakantan, Andrew McCallum
In experiments predicting both relations and entity types, we demonstrate that despite having an order of magnitude fewer parameters than traditional universal schema, we can match the accuracy of the traditional model, and more importantly, we can now make predictions about unseen rows with nearly the same accuracy as rows available at training time.
4 code implementations • 21 Nov 2015 • Arvind Neelakantan, Luke Vilnis, Quoc V. Le, Ilya Sutskever, Lukasz Kaiser, Karol Kurach, James Martens
This success is partially attributed to architectural innovations such as convolutional and long short-term memory networks.
no code implementations • 16 Nov 2015 • Arvind Neelakantan, Quoc V. Le, Ilya Sutskever
In this work, we propose Neural Programmer, an end-to-end differentiable neural network augmented with a small set of basic arithmetic and logic operations.
no code implementations • EACL 2014 • Arvind Neelakantan, Michael Collins
This paper describes an approach for automatic construction of dictionaries for Named Entity Recognition (NER) using large amounts of unlabeled data and a few seed examples.
no code implementations • HLT 2015 • Arvind Neelakantan, Ming-Wei Chang
In this work, we focus on the task of inferring missing entity type instances in a KB, a fundamental task for KB competition yet receives little attention.
no code implementations • IJCNLP 2015 • Arvind Neelakantan, Benjamin Roth, Andrew McCallum
Knowledge base (KB) completion adds new facts to a KB by making inferences from existing facts, for example by inferring with high likelihood nationality(X, Y) from bornIn(X, Y).
no code implementations • EMNLP 2014 • Arvind Neelakantan, Jeevan Shankar, Alexandre Passos, Andrew McCallum
There is rising interest in vector-space word embeddings and their use in NLP, especially given recent methods for their fast estimation at very large scale.