1 code implementation • 5 Nov 2024 • Julian Büchel, Giacomo Camposampiero, Athanasios Vasilopoulos, Corey Lammie, Manuel Le Gallo, Abbas Rahimi, Abu Sebastian
We introduce an approach to kernel approximation in machine learning algorithms suitable for mixed-signal Analog In-Memory Computing (AIMC) architectures.
no code implementations • 22 Apr 2024 • Thomas Ortner, Horst Petschenig, Athanasios Vasilopoulos, Roland Renner, Špela Brglez, Thomas Limbacher, Enrique Piñero, Alejandro Linares Barranco, Angeliki Pantazi, Robert Legenstein
In this work, we pair L2L with in-memory computing NMHW based on phase-change memory devices to build efficient AI models that can rapidly adapt to new tasks.
no code implementations • 12 Feb 2024 • Elena Ferro, Athanasios Vasilopoulos, Corey Lammie, Manuel Le Gallo, Luca Benini, Irem Boybat, Abu Sebastian
Analog In-Memory Computing (AIMC) is an emerging technology for fast and energy-efficient Deep Learning (DL) inference.