Search Results for author: Audun Myers

Found 5 papers, 1 papers with code

ICML Topological Deep Learning Challenge 2024: Beyond the Graph Domain

no code implementations8 Sep 2024 Guillermo Bernárdez, Lev Telyatnikov, Marco Montagna, Federica Baccini, Mathilde Papillon, Miquel Ferriol-Galmés, Mustafa Hajij, Theodore Papamarkou, Maria Sofia Bucarelli, Olga Zaghen, Johan Mathe, Audun Myers, Scott Mahan, Hansen Lillemark, Sharvaree Vadgama, Erik Bekkers, Tim Doster, Tegan Emerson, Henry Kvinge, Katrina Agate, Nesreen K Ahmed, Pengfei Bai, Michael Banf, Claudio Battiloro, Maxim Beketov, Paul Bogdan, Martin Carrasco, Andrea Cavallo, Yun Young Choi, George Dasoulas, Matouš Elphick, Giordan Escalona, Dominik Filipiak, Halley Fritze, Thomas Gebhart, Manel Gil-Sorribes, Salvish Goomanee, Victor Guallar, Liliya Imasheva, Andrei Irimia, Hongwei Jin, Graham Johnson, Nikos Kanakaris, Boshko Koloski, Veljko Kovač, Manuel Lecha, Minho Lee, Pierrick Leroy, Theodore Long, German Magai, Alvaro Martinez, Marissa Masden, Sebastian Mežnar, Bertran Miquel-Oliver, Alexis Molina, Alexander Nikitin, Marco Nurisso, Matt Piekenbrock, Yu Qin, Patryk Rygiel, Alessandro Salatiello, Max Schattauer, Pavel Snopov, Julian Suk, Valentina Sánchez, Mauricio Tec, Francesco Vaccarino, Jonas Verhellen, Frederic Wantiez, Alexander Weers, Patrik Zajec, Blaž Škrlj, Nina Miolane

This paper describes the 2nd edition of the ICML Topological Deep Learning Challenge that was hosted within the ICML 2024 ELLIS Workshop on Geometry-grounded Representation Learning and Generative Modeling (GRaM).

Deep Learning Representation Learning

Topological Signal Processing using the Weighted Ordinal Partition Network

no code implementations27 Apr 2022 Audun Myers, Firas A. Khasawneh, Elizabeth Munch

For this task, we turn to the field of topological data analysis (TDA), which encodes information about the shape and structure of data.

Change Point Detection Time Series +2

Persistent Homology of Complex Networks for Dynamic State Detection

no code implementations16 Apr 2019 Audun Myers, Elizabeth Munch, Firas A. Khasawneh

Specifically, we show how persistent homology, a tool from TDA, can be used to yield a compressed, multi-scale representation of the graph that can distinguish between dynamic states such as periodic and chaotic behavior.

Chaotic Dynamics Computational Geometry Information Theory Information Theory Data Analysis, Statistics and Probability

Cannot find the paper you are looking for? You can Submit a new open access paper.