Search Results for author: Austin Clyde

Found 13 papers, 8 papers with code

DeepSpeed4Science Initiative: Enabling Large-Scale Scientific Discovery through Sophisticated AI System Technologies

no code implementations6 Oct 2023 Shuaiwen Leon Song, Bonnie Kruft, Minjia Zhang, Conglong Li, Shiyang Chen, Chengming Zhang, Masahiro Tanaka, Xiaoxia Wu, Jeff Rasley, Ammar Ahmad Awan, Connor Holmes, Martin Cai, Adam Ghanem, Zhongzhu Zhou, Yuxiong He, Pete Luferenko, Divya Kumar, Jonathan Weyn, Ruixiong Zhang, Sylwester Klocek, Volodymyr Vragov, Mohammed AlQuraishi, Gustaf Ahdritz, Christina Floristean, Cristina Negri, Rao Kotamarthi, Venkatram Vishwanath, Arvind Ramanathan, Sam Foreman, Kyle Hippe, Troy Arcomano, Romit Maulik, Maxim Zvyagin, Alexander Brace, Bin Zhang, Cindy Orozco Bohorquez, Austin Clyde, Bharat Kale, Danilo Perez-Rivera, Heng Ma, Carla M. Mann, Michael Irvin, J. Gregory Pauloski, Logan Ward, Valerie Hayot, Murali Emani, Zhen Xie, Diangen Lin, Maulik Shukla, Ian Foster, James J. Davis, Michael E. Papka, Thomas Brettin, Prasanna Balaprakash, Gina Tourassi, John Gounley, Heidi Hanson, Thomas E Potok, Massimiliano Lupo Pasini, Kate Evans, Dan Lu, Dalton Lunga, Junqi Yin, Sajal Dash, Feiyi Wang, Mallikarjun Shankar, Isaac Lyngaas, Xiao Wang, Guojing Cong, Pei Zhang, Ming Fan, Siyan Liu, Adolfy Hoisie, Shinjae Yoo, Yihui Ren, William Tang, Kyle Felker, Alexey Svyatkovskiy, Hang Liu, Ashwin Aji, Angela Dalton, Michael Schulte, Karl Schulz, Yuntian Deng, Weili Nie, Josh Romero, Christian Dallago, Arash Vahdat, Chaowei Xiao, Thomas Gibbs, Anima Anandkumar, Rick Stevens

In the upcoming decade, deep learning may revolutionize the natural sciences, enhancing our capacity to model and predict natural occurrences.

Deep learning methods for drug response prediction in cancer: predominant and emerging trends

no code implementations18 Nov 2022 Alexander Partin, Thomas S. Brettin, Yitan Zhu, Oleksandr Narykov, Austin Clyde, Jamie Overbeek, Rick L. Stevens

A wave of recent papers demonstrates promising results in predicting cancer response to drug treatments while utilizing deep learning methods.

Drug Response Prediction

Deep Surrogate Docking: Accelerating Automated Drug Discovery with Graph Neural Networks

1 code implementation4 Nov 2022 Ryien Hosseini, Filippo Simini, Austin Clyde, Arvind Ramanathan

The process of screening molecules for desirable properties is a key step in several applications, ranging from drug discovery to material design.

Drug Discovery

Protein-Ligand Docking Surrogate Models: A SARS-CoV-2 Benchmark for Deep Learning Accelerated Virtual Screening

1 code implementation13 Jun 2021 Austin Clyde, Thomas Brettin, Alexander Partin, Hyunseung Yoo, Yadu Babuji, Ben Blaiszik, Andre Merzky, Matteo Turilli, Shantenu Jha, Arvind Ramanathan, Rick Stevens

Our analysis of the speedup explains that to screen more molecules under a docking paradigm, another order of magnitude speedup must come from model accuracy rather than computing speed (which, if increased, will not anymore alter our throughput to screen molecules).

Spatial Graph Attention and Curiosity-driven Policy for Antiviral Drug Discovery

4 code implementations ICLR 2022 Yulun Wu, Mikaela Cashman, Nicholas Choma, Érica T. Prates, Verónica G. Melesse Vergara, Manesh Shah, Andrew Chen, Austin Clyde, Thomas S. Brettin, Wibe A. de Jong, Neeraj Kumar, Martha S. Head, Rick L. Stevens, Peter Nugent, Daniel A. Jacobson, James B. Brown

We developed Distilled Graph Attention Policy Network (DGAPN), a reinforcement learning model to generate novel graph-structured chemical representations that optimize user-defined objectives by efficiently navigating a physically constrained domain.

Drug Discovery Graph Attention

Scaffold Embeddings: Learning the Structure Spanned by Chemical Fragments, Scaffolds and Compounds

no code implementations11 Mar 2021 Austin Clyde, Arvind Ramanathan, Rick Stevens

Molecules have seemed like a natural fit to deep learning's tendency to handle a complex structure through representation learning, given enough data.

Drug Discovery Representation Learning

Learning Curves for Drug Response Prediction in Cancer Cell Lines

1 code implementation25 Nov 2020 Alexander Partin, Thomas Brettin, Yvonne A. Evrard, Yitan Zhu, Hyunseung Yoo, Fangfang Xia, Songhao Jiang, Austin Clyde, Maulik Shukla, Michael Fonstein, James H. Doroshow, Rick Stevens

In contrast, a GBDT with hyperparameter tuning exhibits superior performance as compared with both NNs at the lower range of training sizes for two of the datasets, whereas the mNN performs better at the higher range of training sizes.

Drug Response Prediction

Regression Enrichment Surfaces: a Simple Analysis Technique for Virtual Drug Screening Models

1 code implementation1 Jun 2020 Austin Clyde, Xiaotian Duan, Rick Stevens

We present a new method for understanding the performance of a model in virtual drug screening tasks.

regression

Targeting SARS-CoV-2 with AI- and HPC-enabled Lead Generation: A First Data Release

1 code implementation28 May 2020 Yadu Babuji, Ben Blaiszik, Tom Brettin, Kyle Chard, Ryan Chard, Austin Clyde, Ian Foster, Zhi Hong, Shantenu Jha, Zhuozhao Li, Xuefeng Liu, Arvind Ramanathan, Yi Ren, Nicholaus Saint, Marcus Schwarting, Rick Stevens, Hubertus van Dam, Rick Wagner

Researchers across the globe are seeking to rapidly repurpose existing drugs or discover new drugs to counter the the novel coronavirus disease (COVID-19) caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2).

BIG-bench Machine Learning

A Systematic Approach to Featurization for Cancer Drug Sensitivity Predictions with Deep Learning

1 code implementation30 Apr 2020 Austin Clyde, Tom Brettin, Alexander Partin, Maulik Shaulik, Hyunseung Yoo, Yvonne Evrard, Yitan Zhu, Fangfang Xia, Rick Stevens

By combining various cancer cell line (CCL) drug screening panels, the size of the data has grown significantly to begin understanding how advances in deep learning can advance drug response predictions.

Data Integration

Cannot find the paper you are looking for? You can Submit a new open access paper.