no code implementations • 26 Mar 2025 • David Wong, Bin Wang, Gorkem Durak, Marouane Tliba, Akshay Chaudhari, Aladine Chetouani, Ahmet Enis Cetin, Cagdas Topel, Nicolo Gennaro, Camila Lopes Vendrami, Tugce Agirlar Trabzonlu, Amir Ali Rahsepar, Laetitia Perronne, Matthew Antalek, Onural Ozturk, Gokcan Okur, Andrew C. Gordon, Ayis Pyrros, Frank H. Miller, Amir Borhani, Hatice Savas, Eric Hart, Drew Torigian, Jayaram K. Udupa, Elizabeth Krupinski, Ulas Bagci
The demand for high-quality synthetic data for model training and augmentation has never been greater in medical imaging.
1 code implementation • 20 May 2024 • Zheyuan Zhang, Elif Keles, Gorkem Durak, Yavuz Taktak, Onkar Susladkar, Vandan Gorade, Debesh Jha, Asli C. Ormeci, Alpay Medetalibeyoglu, Lanhong Yao, Bin Wang, Ilkin Sevgi Isler, Linkai Peng, Hongyi Pan, Camila Lopes Vendrami, Amir Bourhani, Yury Velichko, Boqing Gong, Concetto Spampinato, Ayis Pyrros, Pallavi Tiwari, Derk C. F. Klatte, Megan Engels, Sanne Hoogenboom, Candice W. Bolan, Emil Agarunov, Nassier Harfouch, Chenchan Huang, Marco J. Bruno, Ivo Schoots, Rajesh N. Keswani, Frank H. Miller, Tamas Gonda, Cemal Yazici, Temel Tirkes, Baris Turkbey, Michael B. Wallace, Ulas Bagci
We also collected CT scans of 1, 350 patients from publicly available sources for benchmarking purposes.
no code implementations • 21 Jul 2021 • Imon Banerjee, Ananth Reddy Bhimireddy, John L. Burns, Leo Anthony Celi, Li-Ching Chen, Ramon Correa, Natalie Dullerud, Marzyeh Ghassemi, Shih-Cheng Huang, Po-Chih Kuo, Matthew P Lungren, Lyle Palmer, Brandon J Price, Saptarshi Purkayastha, Ayis Pyrros, Luke Oakden-Rayner, Chima Okechukwu, Laleh Seyyed-Kalantari, Hari Trivedi, Ryan Wang, Zachary Zaiman, Haoran Zhang, Judy W Gichoya
Methods: Using private and public datasets we evaluate: A) performance quantification of deep learning models to detect race from medical images, including the ability of these models to generalize to external environments and across multiple imaging modalities, B) assessment of possible confounding anatomic and phenotype population features, such as disease distribution and body habitus as predictors of race, and C) investigation into the underlying mechanism by which AI models can recognize race.
no code implementations • 10 Jul 2020 • Siddharth Biswal, Peiye Zhuang, Ayis Pyrros, Nasir Siddiqui, Sanmi Koyejo, Jimeng Sun
EMIXER is an conditional generative adversarial model by 1) generating an image based on a label, 2) encoding the image to a hidden embedding, 3) producing the corresponding text via a hierarchical decoder from the image embedding, and 4) a joint discriminator for assessing both the image and the corresponding text.
no code implementations • CVPR 2019 • Ishan Deshpande, Yuan-Ting Hu, Ruoyu Sun, Ayis Pyrros, Nasir Siddiqui, Sanmi Koyejo, Zhizhen Zhao, David Forsyth, Alexander Schwing
Generative adversarial nets (GANs) and variational auto-encoders have significantly improved our distribution modeling capabilities, showing promise for dataset augmentation, image-to-image translation and feature learning.