1 code implementation • 10 Mar 2025 • Paul Mangold, Alain Durmus, Aymeric Dieuleveut, Eric Moulines
This paper proposes a novel analysis for the Scaffold algorithm, a popular method for dealing with data heterogeneity in federated learning.
no code implementations • 24 Jan 2025 • Long Phan, Alice Gatti, Ziwen Han, Nathaniel Li, Josephina Hu, Hugh Zhang, Sean Shi, Michael Choi, Anish Agrawal, Arnav Chopra, Adam Khoja, Ryan Kim, Jason Hausenloy, Oliver Zhang, Mantas Mazeika, Daron Anderson, Tung Nguyen, Mobeen Mahmood, Fiona Feng, Steven Y. Feng, Haoran Zhao, Michael Yu, Varun Gangal, Chelsea Zou, Zihan Wang, Jessica P. Wang, Pawan Kumar, Oleksandr Pokutnyi, Robert Gerbicz, Serguei Popov, John-Clark Levin, Mstyslav Kazakov, Johannes Schmitt, Geoff Galgon, Alvaro Sanchez, Yongki Lee, Will Yeadon, Scott Sauers, Marc Roth, Chidozie Agu, Søren Riis, Fabian Giska, Saiteja Utpala, Zachary Giboney, Gashaw M. Goshu, Joan of Arc Xavier, Sarah-Jane Crowson, Mohinder Maheshbhai Naiya, Noah Burns, Lennart Finke, Zerui Cheng, Hyunwoo Park, Francesco Fournier-Facio, John Wydallis, Mark Nandor, Ankit Singh, Tim Gehrunger, Jiaqi Cai, Ben McCarty, Darling Duclosel, Jungbae Nam, Jennifer Zampese, Ryan G. Hoerr, Aras Bacho, Gautier Abou Loume, Abdallah Galal, Hangrui Cao, Alexis C Garretson, Damien Sileo, Qiuyu Ren, Doru Cojoc, Pavel Arkhipov, Usman Qazi, Lianghui Li, Sumeet Motwani, Christian Schroeder de Witt, Edwin Taylor, Johannes Veith, Eric Singer, Taylor D. Hartman, Paolo Rissone, Jaehyeok Jin, Jack Wei Lun Shi, Chris G. Willcocks, Aleksandar Mikov, Ameya Prabhu, Longke Tang, Xavier Alapont, Justine Leon Uro, Kevin Zhou, Emily de Oliveira Santos, Andrey Pupasov Maksimov, Edward Vendrow, Kengo Zenitani, Julien Guillod, Yuqi Li, Joshua Vendrow, Vladyslav Kuchkin, Ng Ze-An, Pierre Marion, Denis Efremov, Jayson Lynch, Kaiqu Liang, Andrew Gritsevskiy, Dakotah Martinez, Ben Pageler, Nick Crispino, Dimitri Zvonkine, Natanael Wildner Fraga, Saeed Soori, Ori Press, Henry Tang, Julian Salazar, Sean R. Green, Lina Brüssel, Moon Twayana, Aymeric Dieuleveut, T. Ryan Rogers, Wenjin Zhang, Bikun Li, Jinzhou Yang, Arun Rao, Gabriel Loiseau, Mikhail Kalinin, Marco Lukas, Ciprian Manolescu, Subrata Mishra, Ariel Ghislain Kemogne Kamdoum, Tobias Kreiman, Tad Hogg, Alvin Jin, Carlo Bosio, Gongbo Sun, Brian P Coppola, Tim Tarver, Haline Heidinger, Rafael Sayous, Stefan Ivanov, Joseph M Cavanagh, Jiawei Shen, Joseph Marvin Imperial, Philippe Schwaller, Shaipranesh Senthilkuma, Andres M Bran, Ali Dehghan, Andres Algaba, Brecht Verbeken, David Noever, Ragavendran P V, Lisa Schut, Ilia Sucholutsky, Evgenii Zheltonozhskii, Derek Lim, Richard Stanley, Shankar Sivarajan, Tong Yang, John Maar, Julian Wykowski, Martí Oller, Jennifer Sandlin, Anmol Sahu, Yuzheng Hu, Sara Fish, Nasser Heydari, Archimedes Apronti, Kaivalya Rawal, Tobias Garcia Vilchis, Yuexuan Zu, Martin Lackner, James Koppel, Jeremy Nguyen, Daniil S. Antonenko, Steffi Chern, Bingchen Zhao, Pierrot Arsene, Alan Goldfarb, Sergey Ivanov, Rafał Poświata, Chenguang Wang, Daofeng Li, Donato Crisostomi, Andrea Achilleos, Benjamin Myklebust, Archan Sen, David Perrella, Nurdin Kaparov, Mark H Inlow, Allen Zang, Elliott Thornley, Daniil Orel, Vladislav Poritski, Shalev Ben-David, Zachary Berger, Parker Whitfill, Michael Foster, Daniel Munro, Linh Ho, Dan Bar Hava, Aleksey Kuchkin, Robert Lauff, David Holmes, Frank Sommerhage, Keith Schneider, Zakayo Kazibwe, Nate Stambaugh, Mukhwinder Singh, Ilias Magoulas, Don Clarke, Dae Hyun Kim, Felipe Meneguitti Dias, Veit Elser, Kanu Priya Agarwal, Victor Efren Guadarrama Vilchis, Immo Klose, Christoph Demian, Ujjwala Anantheswaran, Adam Zweiger, Guglielmo Albani, Jeffery Li, Nicolas Daans, Maksim Radionov, Václav Rozhoň, Ziqiao Ma, Christian Stump, Mohammed Berkani, Jacob Platnick, Volodymyr Nevirkovets, Luke Basler, Marco Piccardo, Ferenc Jeanplong, Niv Cohen, Josef Tkadlec, Paul Rosu, Piotr Padlewski, Stanislaw Barzowski, Kyle Montgomery, Aline Menezes, Arkil Patel, Zixuan Wang, Jamie Tucker-Foltz, Jack Stade, Tom Goertzen, Fereshteh Kazemi, Jeremiah Milbauer, John Arnold Ambay, Abhishek Shukla, Yan Carlos Leyva Labrador, Alan Givré, Hew Wolff, Vivien Rossbach, Muhammad Fayez Aziz, Younesse Kaddar, Yanxu Chen, Robin Zhang, Jiayi Pan, Antonio Terpin, Niklas Muennighoff, Hailey Schoelkopf, Eric Zheng, Avishy Carmi, Adam Jones, Jainam Shah, Ethan D. L. Brown, Kelin Zhu, Max Bartolo, Richard Wheeler, Andrew Ho, Shaul Barkan, Jiaqi Wang, Martin Stehberger, Egor Kretov, Kaustubh Sridhar, Zienab EL-Wasif, Anji Zhang, Daniel Pyda, Joanna Tam, David M. Cunningham, Vladimir Goryachev, Demosthenes Patramanis, Michael Krause, Andrew Redenti, Daniel Bugas, David Aldous, Jesyin Lai, Shannon Coleman, Mohsen Bahaloo, Jiangnan Xu, Sangwon Lee, Sandy Zhao, Ning Tang, Michael K. Cohen, Micah Carroll, Orr Paradise, Jan Hendrik Kirchner, Stefan Steinerberger, Maksym Ovchynnikov, Jason O. Matos, Adithya Shenoy, Benedito Alves de Oliveira Junior, Michael Wang, Yuzhou Nie, Paolo Giordano, Philipp Petersen, Anna Sztyber-Betley, Priti Shukla, Jonathan Crozier, Antonella Pinto, Shreyas Verma, Prashant Joshi, Zheng-Xin Yong, Allison Tee, Jérémy Andréoletti, Orion Weller, Raghav Singhal, Gang Zhang, Alexander Ivanov, Seri Khoury, Hamid Mostaghimi, Kunvar Thaman, Qijia Chen, Tran Quoc Khánh, Jacob Loader, Stefano Cavalleri, Hannah Szlyk, Zachary Brown, Jonathan Roberts, William Alley, Kunyang Sun, Ryan Stendall, Max Lamparth, Anka Reuel, Ting Wang, Hanmeng Xu, Sreenivas Goud Raparthi, Pablo Hernández-Cámara, Freddie Martin, Dmitry Malishev, Thomas Preu, Tomek Korbak, Marcus Abramovitch, Dominic Williamson, Ziye Chen, Biró Bálint, M Saiful Bari, Peyman Kassani, ZiHao Wang, Behzad Ansarinejad, Laxman Prasad Goswami, Yewen Sun, Hossam Elgnainy, Daniel Tordera, George Balabanian, Earth Anderson, Lynna Kvistad, Alejandro José Moyano, Rajat Maheshwari, Ahmad Sakor, Murat Eron, Isaac C. McAlister, Javier Gimenez, Innocent Enyekwe, Andrew Favre D. O., Shailesh Shah, Xiaoxiang Zhou, Firuz Kamalov, Ronald Clark, Sherwin Abdoli, Tim Santens, Khalida Meer, Harrison K Wang, Kalyan Ramakrishnan, Evan Chen, Alessandro Tomasiello, G. Bruno De Luca, Shi-Zhuo Looi, Vinh-Kha Le, Noam Kolt, Niels Mündler, Avi Semler, Emma Rodman, Jacob Drori, Carl J Fossum, Milind Jagota, Ronak Pradeep, Honglu Fan, Tej Shah, Jonathan Eicher, Michael Chen, Kushal Thaman, William Merrill, Carter Harris, Jason Gross, Ilya Gusev, Asankhaya Sharma, Shashank Agnihotri, Pavel Zhelnov, Siranut Usawasutsakorn, Mohammadreza Mofayezi, Sergei Bogdanov, Alexander Piperski, Marc Carauleanu, David K. Zhang, Dylan Ler, Roman Leventov, Ignat Soroko, Thorben Jansen, Pascal Lauer, Joshua Duersch, Vage Taamazyan, Wiktor Morak, Wenjie Ma, William Held, Tran Đuc Huy, Ruicheng Xian, Armel Randy Zebaze, Mohanad Mohamed, Julian Noah Leser, Michelle X Yuan, Laila Yacar, Johannes Lengler, Hossein Shahrtash, Edson Oliveira, Joseph W. Jackson, Daniel Espinosa Gonzalez, Andy Zou, Muthu Chidambaram, Timothy Manik, Hector Haffenden, Dashiell Stander, Ali Dasouqi, Alexander Shen, Emilien Duc, Bita Golshani, David Stap, Mikalai Uzhou, Alina Borisovna Zhidkovskaya, Lukas Lewark, Mátyás Vincze, Dustin Wehr, Colin Tang, Zaki Hossain, Shaun Phillips, Jiang Muzhen, Fredrik Ekström, Angela Hammon, Oam Patel, Nicolas Remy, Faraz Farhidi, George Medley, Forough Mohammadzadeh, Madellene Peñaflor, Haile Kassahun, Alena Friedrich, Claire Sparrow, Taom Sakal, Omkar Dhamane, Ali Khajegili Mirabadi, Eric Hallman, Mike Battaglia, Mohammad Maghsoudimehrabani, Hieu Hoang, Alon Amit, Dave Hulbert, Roberto Pereira, Simon Weber, Stephen Mensah, Nathan Andre, Anton Peristyy, Chris Harjadi, Himanshu Gupta, Stephen Malina, Samuel Albanie, Will Cai, Mustafa Mehkary, Frank Reidegeld, Anna-Katharina Dick, Cary Friday, Jasdeep Sidhu, Wanyoung Kim, Mariana Costa, Hubeyb Gurdogan, Brian Weber, Harsh Kumar, Tong Jiang, Arunim Agarwal, Chiara Ceconello, Warren S. Vaz, Chao Zhuang, Haon Park, Andrew R. Tawfeek, Daattavya Aggarwal, Michael Kirchhof, Linjie Dai, Evan Kim, Johan Ferret, Yuzhou Wang, Minghao Yan, Krzysztof Burdzy, Lixin Zhang, Antonio Franca, Diana T. Pham, Kang Yong Loh, Joshua Robinson, Shreen Gul, Gunjan Chhablani, Zhehang Du, Adrian Cosma, Colin White, Robin Riblet, Prajvi Saxena, Jacob Votava, Vladimir Vinnikov, Ethan Delaney, Shiv Halasyamani, Syed M. Shahid, Jean-Christophe Mourrat, Lavr Vetoshkin, Renas Bacho, Vincent Ginis, Aleksandr Maksapetyan, Florencia de la Rosa, Xiuyu Li, Guillaume Malod, Leon Lang, Julien Laurendeau, Fatimah Adesanya, Julien Portier, Lawrence Hollom, Victor Souza, Yuchen Anna Zhou, Yiğit Yalın, Gbenga Daniel Obikoya, Luca Arnaboldi, Rai, Filippo Bigi, Kaniuar Bacho, Pierre Clavier, Gabriel Recchia, Mara Popescu, Nikita Shulga, Ngefor Mildred Tanwie, Thomas C. H. Lux, Ben Rank, Colin Ni, Alesia Yakimchyk, Huanxu, Liu, Olle Häggström, Emil Verkama, Himanshu Narayan, Hans Gundlach, Leonor Brito-Santana, Brian Amaro, Vivek Vajipey, Rynaa Grover, Yiyang Fan, Gabriel Poesia Reis e Silva, Linwei Xin, Yosi Kratish, Jakub Łucki, Wen-Ding Li, Justin Xu, Kevin Joseph Scaria, Freddie Vargus, Farzad Habibi, Long, Lian, Emanuele Rodolà, Jules Robins, Vincent Cheng, Declan Grabb, Ida Bosio, Tony Fruhauff, Ido Akov, Eve J. Y. Lo, Hao Qi, Xi Jiang, Ben Segev, Jingxuan Fan, Sarah Martinson, Erik Y. Wang, Kaylie Hausknecht, Michael P. Brenner, Mao Mao, Yibo Jiang, Xinyu Zhang, David Avagian, Eshawn Jessica Scipio, Muhammad Rehan Siddiqi, Alon Ragoler, Justin Tan, Deepakkumar Patil, Rebeka Plecnik, Aaron Kirtland, Roselynn Grace Montecillo, Stephane Durand, Omer Faruk Bodur, Zahra Adoul, Mohamed Zekry, Guillaume Douville, Ali Karakoc, Tania C. B. Santos, Samir Shamseldeen, Loukmane Karim, Anna Liakhovitskaia, Nate Resman, Nicholas Farina, Juan Carlos Gonzalez, Gabe Maayan, Sarah Hoback, Rodrigo De Oliveira Pena, Glen Sherman, Hodjat Mariji, Rasoul Pouriamanesh, Wentao Wu, Gözdenur Demir, Sandra Mendoza, Ismail Alarab, Joshua Cole, Danyelle Ferreira, Bryan Johnson, Hsiaoyun Milliron, Mohammad Safdari, Liangti Dai, Siriphan Arthornthurasuk, Alexey Pronin, Jing Fan, Angel Ramirez-Trinidad, Ashley Cartwright, Daphiny Pottmaier, Omid Taheri, David Outevsky, Stanley Stepanic, Samuel Perry, Luke Askew, Raúl Adrián Huerta Rodríguez, Abdelkader Dendane, Sam Ali, Ricardo Lorena, Krishnamurthy Iyer, Sk Md Salauddin, Murat Islam, Juan Gonzalez, Josh Ducey, Russell Campbell, Maja Somrak, Vasilios Mavroudis, Eric Vergo, Juehang Qin, Benjámin Borbás, Eric Chu, Jack Lindsey, Anil Radhakrishnan, Antoine Jallon, I. M. J. McInnis, Alex Hoover, Sören Möller, Song Bian, John Lai, Tejal Patwardhan, Summer Yue, Alexandr Wang, Dan Hendrycks
However, benchmarks are not keeping pace in difficulty: LLMs now achieve over 90\% accuracy on popular benchmarks like MMLU, limiting informed measurement of state-of-the-art LLM capabilities.
Ranked #4 on
Humanity's Last Exam
on Humanity's Last Exam
no code implementations • 2 Dec 2024 • Paul Mangold, Alain Durmus, Aymeric Dieuleveut, Sergey Samsonov, Eric Moulines
In this paper, we present a novel analysis of FedAvg with constant step size, relying on the Markov property of the underlying process.
no code implementations • 14 Oct 2024 • Renaud Gaucher, Aymeric Dieuleveut, Hadrien Hendrikx
We introduce a practical robust aggregation rule, coined $\rm CS_{ours}$, such that $\rm CS_{ours}\text{-}RG$ has a near-optimal breakdown.
no code implementations • 6 May 2024 • Renaud Gaucher, Hadrien Hendrikx, Aymeric Dieuleveut
Distributed approaches have many computational benefits, but they are vulnerable to attacks from a subset of devices transmitting incorrect information.
no code implementations • 6 Feb 2024 • Alexis Ayme, Claire Boyer, Aymeric Dieuleveut, Erwan Scornet
Constant (naive) imputation is still widely used in practice as this is a first easy-to-use technique to deal with missing data.
1 code implementation • 2 Feb 2024 • Rémi Leluc, Aymeric Dieuleveut, François Portier, Johan Segers, Aigerim Zhuman
Spherical harmonics are polynomials on the sphere that form an orthonormal basis of the set of square-integrable functions on the sphere.
no code implementations • 31 Oct 2023 • Mahmoud Hegazy, Rémi Leluc, Cheuk Ting Li, Aymeric Dieuleveut
Compression schemes have been extensively used in Federated Learning (FL) to reduce the communication cost of distributed learning.
2 code implementations • 29 Oct 2023 • Damien Ferbach, Baptiste Goujaud, Gauthier Gidel, Aymeric Dieuleveut
The energy landscape of high-dimensional non-convex optimization problems is crucial to understanding the effectiveness of modern deep neural network architectures.
no code implementations • 2 Aug 2023 • Constantin Philippenko, Aymeric Dieuleveut
In this paper, we investigate the impact of compression on stochastic gradient algorithms for machine learning, a technique widely used in distributed and federated learning.
1 code implementation • 5 Jun 2023 • Margaux Zaffran, Aymeric Dieuleveut, Julie Josse, Yaniv Romano
This motivates our novel generalized conformalized quantile regression framework, missing data augmentation, which yields prediction intervals that are valid conditionally to the patterns of missing values, despite their exponential number.
no code implementations • 22 Feb 2023 • Aymeric Dieuleveut, Gersende Fort, Eric Moulines, Hoi-To Wai
Stochastic Approximation (SA) is a classical algorithm that has had since the early days a huge impact on signal processing, and nowadays on machine learning, due to the necessity to deal with a large amount of data observed with uncertainties.
1 code implementation • 10 Oct 2022 • Jean Ogier du Terrail, Samy-Safwan Ayed, Edwige Cyffers, Felix Grimberg, Chaoyang He, Regis Loeb, Paul Mangold, Tanguy Marchand, Othmane Marfoq, Erum Mushtaq, Boris Muzellec, Constantin Philippenko, Santiago Silva, Maria Teleńczuk, Shadi Albarqouni, Salman Avestimehr, Aurélien Bellet, Aymeric Dieuleveut, Martin Jaggi, Sai Praneeth Karimireddy, Marco Lorenzi, Giovanni Neglia, Marc Tommasi, Mathieu Andreux
In this work, we propose a novel cross-silo dataset suite focused on healthcare, FLamby (Federated Learning AMple Benchmark of Your cross-silo strategies), to bridge the gap between theory and practice of cross-silo FL.
2 code implementations • 15 Feb 2022 • Margaux Zaffran, Aymeric Dieuleveut, Olivier Féron, Yannig Goude, Julie Josse
While recent works tackled this issue, we argue that Adaptive Conformal Inference (ACI, Gibbs and Cand{\`e}s, 2021), developed for distribution-shift time series, is a good procedure for time series with general dependency.
no code implementations • 3 Feb 2022 • Alexis Ayme, Claire Boyer, Aymeric Dieuleveut, Erwan Scornet
Missing values arise in most real-world data sets due to the aggregation of multiple sources and intrinsically missing information (sensor failure, unanswered questions in surveys...).
2 code implementations • 11 Jan 2022 • Baptiste Goujaud, Céline Moucer, François Glineur, Julien Hendrickx, Adrien Taylor, Aymeric Dieuleveut
PEPit is a Python package aiming at simplifying the access to worst-case analyses of a large family of first-order optimization methods possibly involving gradient, projection, proximal, or linear optimization oracles, along with their approximate, or Bregman variants.
no code implementations • NeurIPS 2021 • Aymeric Dieuleveut, Gersende Fort, Eric Moulines, Geneviève Robin
The Expectation Maximization (EM) algorithm is the default algorithm for inference in latent variable models.
1 code implementation • 17 Nov 2021 • Maxence Noble, Aurélien Bellet, Aymeric Dieuleveut
Federated Learning (FL) is a paradigm for large-scale distributed learning which faces two key challenges: (i) efficient training from highly heterogeneous user data, and (ii) protecting the privacy of participating users.
no code implementations • 3 Nov 2021 • Aymeric Dieuleveut, Gersende Fort, Eric Moulines, Geneviève Robin
The Expectation Maximization (EM) algorithm is the default algorithm for inference in latent variable models.
no code implementations • 1 Jun 2021 • Maxime Vono, Vincent Plassier, Alain Durmus, Aymeric Dieuleveut, Eric Moulines
The objective of Federated Learning (FL) is to perform statistical inference for data which are decentralised and stored locally on networked clients.
no code implementations • NeurIPS 2021 • Louis Leconte, Aymeric Dieuleveut, Edouard Oyallon, Eric Moulines, Gilles Pages
The growing size of models and datasets have made distributed implementation of stochastic gradient descent (SGD) an active field of research.
2 code implementations • NeurIPS 2021 • Constantin Philippenko, Aymeric Dieuleveut
To obtain this improvement, we design MCM, an algorithm such that the downlink compression only impacts local models, while the global model is preserved.
no code implementations • NeurIPS 2020 • Aude Sportisse, Claire Boyer, Aymeric Dieuleveut, Julie Josses
Stochastic gradient algorithm is a key ingredient of many machine learning methods, particularly appropriate for large-scale learning.
no code implementations • ICML 2020 • Scott Pesme, Aymeric Dieuleveut, Nicolas Flammarion
Constant step-size Stochastic Gradient Descent exhibits two phases: a transient phase during which iterates make fast progress towards the optimum, followed by a stationary phase during which iterates oscillate around the optimal point.
1 code implementation • 25 Jun 2020 • Constantin Philippenko, Aymeric Dieuleveut
We introduce a framework - Artemis - to tackle the problem of learning in a distributed or federated setting with communication constraints and device partial participation.
1 code implementation • NeurIPS 2019 • Aymeric Dieuleveut, Kumar Kshitij Patel
Synchronous mini-batch SGD is state-of-the-art for large-scale distributed machine learning.
no code implementations • 25 Apr 2019 • Kumar Kshitij Patel, Aymeric Dieuleveut
Synchronous mini-batch SGD is state-of-the-art for large-scale distributed machine learning.
1 code implementation • NeurIPS 2019 • Jean-Yves Franceschi, Aymeric Dieuleveut, Martin Jaggi
Time series constitute a challenging data type for machine learning algorithms, due to their highly variable lengths and sparse labeling in practice.
2 code implementations • 29 Aug 2018 • Sidak Pal Singh, Andreas Hug, Aymeric Dieuleveut, Martin Jaggi
We present a framework for building unsupervised representations of entities and their compositions, where each entity is viewed as a probability distribution rather than a vector embedding.
no code implementations • 5 Jun 2018 • Sidak Pal Singh, Andreas Hug, Aymeric Dieuleveut, Martin Jaggi
We propose a unified framework for building unsupervised representations of individual objects or entities (and their compositions), by associating with each object both a distributional as well as a point estimate (vector embedding).
no code implementations • 20 Jul 2017 • Aymeric Dieuleveut, Alain Durmus, Francis Bach
We consider the minimization of an objective function given access to unbiased estimates of its gradient through stochastic gradient descent (SGD) with constant step-size.
no code implementations • 17 Feb 2016 • Aymeric Dieuleveut, Nicolas Flammarion, Francis Bach
We consider the optimization of a quadratic objective function whose gradients are only accessible through a stochastic oracle that returns the gradient at any given point plus a zero-mean finite variance random error.