no code implementations • 19 Mar 2023 • Devendra K. Jangid, Neal R. Brodnik, McLean P. Echlin, Tresa M. Pollock, Samantha H. Daly, B. S. Manjunath
Our framework uses a quaternion residual block self-attention network (QRBSA) to generate high-resolution 3D EBSD maps from sparsely sectioned EBSD maps.
no code implementations • 18 Jan 2023 • A S M Iftekhar, Raphael Ruschel, Satish Kumar, Suya You, B. S. Manjunath
Scene-graph generation involves creating a structural representation of the relationships between objects in a scene by predicting subject-object-relation triplets from input data.
no code implementations • 14 Dec 2022 • Jiaxiang Jiang, Michael Goebel, Cezar Borba, William Smith, B. S. Manjunath
A skeleton graph is then obtained from skeleton mesh and is used to extract sub-cellular features.
no code implementations • 17 Nov 2022 • Ekta Prashnani, Michael Goebel, B. S. Manjunath
Overall, with PhaseForensics, we show improved distortion and adversarial robustness, and state-of-the-art cross-dataset generalization, with 91. 2% video-level AUC on the challenging CelebDFv2 (a recent state-of-the-art compares at 86. 9%).
no code implementations • 15 Nov 2022 • R. Austin McEver, BoWen Zhang, B. S. Manjunath
However, in many scenarios, it can be difficult to collect images for training, not to mention the costs associated with collecting annotations suitable for training these object detectors.
1 code implementation • 4 Nov 2022 • Tajuddin Manhar Mohammed, Lakshmanan Nataraj, Satish Chikkagoudar, Shivkumar Chandrasekaran, B. S. Manjunath
The number of malware is constantly on the rise.
1 code implementation • 7 Oct 2022 • Satish Kumar, ASM Iftekhar, Ekta Prashnani, B. S. Manjunath
This paper describes LOCL (Learning Object Attribute Composition using Localization) that generalizes composition zero shot learning to objects in cluttered and more realistic settings.
Ranked #1 on
Zero-Shot Learning
on MIT-States
1 code implementation • 17 Aug 2022 • Jiaxiang Jiang, Amil Khan, S. Shailja, Samuel A. Belteton, Michael Goebel, Daniel B. Szymanski, B. S. Manjunath
This paper presents a method for time-lapse 3D cell analysis.
no code implementations • 1 Jun 2022 • R. Austin McEver, BoWen Zhang, Connor Levenson, A S M Iftekhar, B. S. Manjunath
Each video includes annotations indicating the start and end times of substrates across the video in addition to counts of species of interest.
1 code implementation • BME Frontiers 2022 • Angela Zhang, Amil Khan, Saisidharth Majeti, Judy Pham, Christopher Nguyen, Peter Tran, Vikram Iyer, Ashutosh Shelat, Jefferson Chen, B. S. Manjunath
The segmentation and network features are used to train a model for NPH prediction.
no code implementations • 8 Nov 2021 • Tajuddin Manhar Mohammed, Lakshmanan Nataraj, Satish Chikkagoudar, Shivkumar Chandrasekaran, B. S. Manjunath
Malicious PDF documents present a serious threat to various security organizations that require modern threat intelligence platforms to effectively analyze and characterize the identity and behavior of PDF malware.
no code implementations • 8 Nov 2021 • Lakshmanan Nataraj, Tajuddin Manhar Mohammed, Tejaswi Nanjundaswamy, Satish Chikkagoudar, Shivkumar Chandrasekaran, B. S. Manjunath
In this paper, we propose a novel and orthogonal malware detection (OMD) approach to identify malware using a combination of audio descriptors, image similarity descriptors and other static/statistical features.
no code implementations • 4 Sep 2021 • Lakshmanan Nataraj, Chandrakanth Gudavalli, Tajuddin Manhar Mohammed, Shivkumar Chandrasekaran, B. S. Manjunath
In this paper, we propose a two-step method to detect and localize seam carved images.
no code implementations • 28 Aug 2021 • Chandrakanth Gudavalli, Erik Rosten, Lakshmanan Nataraj, Shivkumar Chandrasekaran, B. S. Manjunath
Seam carving is a popular technique for content aware image retargeting.
1 code implementation • 2 Aug 2021 • A S M Iftekhar, Satish Kumar, R. Austin McEver, Suya You, B. S. Manjunath
For detecting HOI, it is important to utilize relative spatial configurations and object semantics to find salient spatial regions of images that highlight the interactions between human object pairs.
1 code implementation • 2 Aug 2021 • S. Shailja, Angela Zhang, B. S. Manjunath
We develop a computational geometry-based tractography representation that aims to simplify the connectivity of white matter fibers.
no code implementations • 29 May 2021 • Aditya Jonnalagadda, William Yang Wang, B. S. Manjunath, Miguel P. Eckstein
We propose Foveated Transformer (FoveaTer) model, which uses pooling regions and eye movements to perform object classification tasks using a Vision Transformer architecture.
no code implementations • 12 Apr 2021 • Lakshmanan Nataraj, Michael Goebel, Tajuddin Manhar Mohammed, Shivkumar Chandrasekaran, B. S. Manjunath
While most detection methods in literature focus on detecting a particular type of manipulation, it is challenging to identify doctored images that involve a host of manipulations.
no code implementations • 22 Mar 2021 • Jason Bunk, Srinjoy Chattopadhyay, B. S. Manjunath, Shivkumar Chandrasekaran
Mixup is a procedure for data augmentation that trains networks to make smoothly interpolated predictions between datapoints.
1 code implementation • 19 Mar 2021 • Michael Goebel, Jason Bunk, Srinjoy Chattopadhyay, Lakshmanan Nataraj, Shivkumar Chandrasekaran, B. S. Manjunath
Machine Learning (ML) algorithms are susceptible to adversarial attacks and deception both during training and deployment.
1 code implementation • 26 Jan 2021 • Tajuddin Manhar Mohammed, Lakshmanan Nataraj, Satish Chikkagoudar, Shivkumar Chandrasekaran, B. S. Manjunath
Motivated by the visual similarity of these images for different malware families, we compare our deep neural network models with standard image features like GIST descriptors to evaluate the performance.
1 code implementation • 18 Nov 2020 • Satish Kumar, A S M Iftekhar, Michael Goebel, Tom Bullock, Mary H. MacLean, Michael B. Miller, Tyler Santander, Barry Giesbrecht, Scott T. Grafton, B. S. Manjunath
Precise measurement of physiological signals is critical for the effective monitoring of human vital signs.
1 code implementation • 26 Oct 2020 • S. Shailja, Jiaxiang Jiang, B. S. Manjunath
We propose a novel weakly supervised method to improve the boundary of the 3D segmented nuclei utilizing an over-segmented image.
no code implementations • 18 Oct 2020 • Sudipta Paul, Shivkumar Chandrasekaran, B. S. Manjunath, Amit K. Roy-Chowdhury
Several works in computer vision have demonstrated the effectiveness of active learning for adapting the recognition model when new unlabeled data becomes available.
no code implementations • 27 Jul 2020 • Devendra K. Jangid, Neal R. Brodnik, Amil Khan, McLean P. Echlin, Tresa M. Pollock, Sam Daly, B. S. Manjunath
In the field of computer vision, unsupervised learning for 2D object generation has advanced rapidly in the past few years.
no code implementations • 20 Jul 2020 • Michael Goebel, Lakshmanan Nataraj, Tejaswi Nanjundaswamy, Tajuddin Manhar Mohammed, Shivkumar Chandrasekaran, B. S. Manjunath
Recent advances in Generative Adversarial Networks (GANs) have led to the creation of realistic-looking digital images that pose a major challenge to their detection by humans or computers.
no code implementations • 10 Jul 2020 • R. Austin McEver, B. S. Manjunath
Current state of the art methods for generating semantic segmentation rely heavily on a large set of images that have each pixel labeled with a class of interest label or background.
Weakly supervised Semantic Segmentation
Weakly-Supervised Semantic Segmentation
2 code implementations • CVPR 2020 • Oytun Ulutan, A. S. M. Iftekhar, B. S. Manjunath
Comprehensive visual understanding requires detection frameworks that can effectively learn and utilize object interactions while analyzing objects individually.
Ranked #23 on
Human-Object Interaction Detection
on V-COCO
1 code implementation • 22 Jul 2019 • Po-Yu Kao, Jefferson W. Chen, B. S. Manjunath
However, the presence of stroke lesion may cause neural disruptions to other brain regions, and these potentially damaged regions may affect the clinical outcome of stroke patients.
no code implementations • 29 Jun 2019 • Po-Yu Kao, Jefferson W. Chen, B. S. Manjunath
We propose a novel, simple and effective method to integrate lesion prior and a 3D U-Net for improving brain tumor segmentation.
1 code implementation • 16 Apr 2019 • Po-Yu Kao, Angela Zhang, Michael Goebel, Jefferson W. Chen, B. S. Manjunath
In this work, we utilize T1-weighted MR images and StackNet to predict fluid intelligence in adolescents.
no code implementations • 15 Mar 2019 • Lakshmanan Nataraj, Tajuddin Manhar Mohammed, Shivkumar Chandrasekaran, Arjuna Flenner, Jawadul H. Bappy, Amit K. Roy-Chowdhury, B. S. Manjunath
The advent of Generative Adversarial Networks (GANs) has brought about completely novel ways of transforming and manipulating pixels in digital images.
1 code implementation • 6 Mar 2019 • Jawadul H. Bappy, Cody Simons, Lakshmanan Nataraj, B. S. Manjunath, Amit K. Roy-Chowdhury
This paper proposes a high-confidence manipulation localization architecture which utilizes resampling features, Long-Short Term Memory (LSTM) cells, and encoder-decoder network to segment out manipulated regions from non-manipulated ones.
1 code implementation • 13 Feb 2019 • Jiaxiang Jiang, Po-Yu Kao, Samuel A. Belteton, Daniel B. Szymanski, B. S. Manjunath
We consider the problem of accurately identifying cell boundaries and labeling individual cells in confocal microscopy images, specifically, 3D image stacks of cells with tagged cell membranes.
no code implementations • 11 Feb 2019 • M. Goebel, A. Flenner, L. Nataraj, B. S. Manjunath
The first method uses the features from the last convolutional layer of a pre-trained network as input to a classifier.
1 code implementation • 25 Jan 2019 • Angela Zhang, Po-Yu Kao, Ronald Sahyouni, Ashutosh Shelat, Jefferson Chen, B. S. Manjunath
The Evan's ratio, an approximation of the ratio of ventricle to brain volume using only one 2D slice of the scan, has been proposed but is not robust.
2 code implementations • 30 Dec 2018 • Oytun Ulutan, Swati Rallapalli, Mudhakar Srivatsa, Carlos Torres, B. S. Manjunath
While observing complex events with multiple actors, humans do not assess each actor separately, but infer from the context.
1 code implementation • 5 Nov 2018 • Spyridon Bakas, Mauricio Reyes, Andras Jakab, Stefan Bauer, Markus Rempfler, Alessandro Crimi, Russell Takeshi Shinohara, Christoph Berger, Sung Min Ha, Martin Rozycki, Marcel Prastawa, Esther Alberts, Jana Lipkova, John Freymann, Justin Kirby, Michel Bilello, Hassan Fathallah-Shaykh, Roland Wiest, Jan Kirschke, Benedikt Wiestler, Rivka Colen, Aikaterini Kotrotsou, Pamela Lamontagne, Daniel Marcus, Mikhail Milchenko, Arash Nazeri, Marc-Andre Weber, Abhishek Mahajan, Ujjwal Baid, Elizabeth Gerstner, Dongjin Kwon, Gagan Acharya, Manu Agarwal, Mahbubul Alam, Alberto Albiol, Antonio Albiol, Francisco J. Albiol, Varghese Alex, Nigel Allinson, Pedro H. A. Amorim, Abhijit Amrutkar, Ganesh Anand, Simon Andermatt, Tal Arbel, Pablo Arbelaez, Aaron Avery, Muneeza Azmat, Pranjal B., W Bai, Subhashis Banerjee, Bill Barth, Thomas Batchelder, Kayhan Batmanghelich, Enzo Battistella, Andrew Beers, Mikhail Belyaev, Martin Bendszus, Eze Benson, Jose Bernal, Halandur Nagaraja Bharath, George Biros, Sotirios Bisdas, James Brown, Mariano Cabezas, Shilei Cao, Jorge M. Cardoso, Eric N Carver, Adrià Casamitjana, Laura Silvana Castillo, Marcel Catà, Philippe Cattin, Albert Cerigues, Vinicius S. Chagas, Siddhartha Chandra, Yi-Ju Chang, Shiyu Chang, Ken Chang, Joseph Chazalon, Shengcong Chen, Wei Chen, Jefferson W. Chen, Zhaolin Chen, Kun Cheng, Ahana Roy Choudhury, Roger Chylla, Albert Clérigues, Steven Colleman, Ramiro German Rodriguez Colmeiro, Marc Combalia, Anthony Costa, Xiaomeng Cui, Zhenzhen Dai, Lutao Dai, Laura Alexandra Daza, Eric Deutsch, Changxing Ding, Chao Dong, Shidu Dong, Wojciech Dudzik, Zach Eaton-Rosen, Gary Egan, Guilherme Escudero, Théo Estienne, Richard Everson, Jonathan Fabrizio, Yong Fan, Longwei Fang, Xue Feng, Enzo Ferrante, Lucas Fidon, Martin Fischer, Andrew P. French, Naomi Fridman, Huan Fu, David Fuentes, Yaozong Gao, Evan Gates, David Gering, Amir Gholami, Willi Gierke, Ben Glocker, Mingming Gong, Sandra González-Villá, T. Grosges, Yuanfang Guan, Sheng Guo, Sudeep Gupta, Woo-Sup Han, Il Song Han, Konstantin Harmuth, Huiguang He, Aura Hernández-Sabaté, Evelyn Herrmann, Naveen Himthani, Winston Hsu, Cheyu Hsu, Xiaojun Hu, Xiaobin Hu, Yan Hu, Yifan Hu, Rui Hua, Teng-Yi Huang, Weilin Huang, Sabine Van Huffel, Quan Huo, Vivek HV, Khan M. Iftekharuddin, Fabian Isensee, Mobarakol Islam, Aaron S. Jackson, Sachin R. Jambawalikar, Andrew Jesson, Weijian Jian, Peter Jin, V Jeya Maria Jose, Alain Jungo, B Kainz, Konstantinos Kamnitsas, Po-Yu Kao, Ayush Karnawat, Thomas Kellermeier, Adel Kermi, Kurt Keutzer, Mohamed Tarek Khadir, Mahendra Khened, Philipp Kickingereder, Geena Kim, Nik King, Haley Knapp, Urspeter Knecht, Lisa Kohli, Deren Kong, Xiangmao Kong, Simon Koppers, Avinash Kori, Ganapathy Krishnamurthi, Egor Krivov, Piyush Kumar, Kaisar Kushibar, Dmitrii Lachinov, Tryphon Lambrou, Joon Lee, Chengen Lee, Yuehchou Lee, M Lee, Szidonia Lefkovits, Laszlo Lefkovits, James Levitt, Tengfei Li, Hongwei Li, Hongyang Li, Xiaochuan Li, Yuexiang Li, Heng Li, Zhenye Li, Xiaoyu Li, Zeju Li, Xiaogang Li, Wenqi Li, Zheng-Shen Lin, Fengming Lin, Pietro Lio, Chang Liu, Boqiang Liu, Xiang Liu, Mingyuan Liu, Ju Liu, Luyan Liu, Xavier Llado, Marc Moreno Lopez, Pablo Ribalta Lorenzo, Zhentai Lu, Lin Luo, Zhigang Luo, Jun Ma, Kai Ma, Thomas Mackie, Anant Madabushi, Issam Mahmoudi, Klaus H. Maier-Hein, Pradipta Maji, CP Mammen, Andreas Mang, B. S. Manjunath, Michal Marcinkiewicz, S McDonagh, Stephen McKenna, Richard McKinley, Miriam Mehl, Sachin Mehta, Raghav Mehta, Raphael Meier, Christoph Meinel, Dorit Merhof, Craig Meyer, Robert Miller, Sushmita Mitra, Aliasgar Moiyadi, David Molina-Garcia, Miguel A. B. Monteiro, Grzegorz Mrukwa, Andriy Myronenko, Jakub Nalepa, Thuyen Ngo, Dong Nie, Holly Ning, Chen Niu, Nicholas K Nuechterlein, Eric Oermann, Arlindo Oliveira, Diego D. C. Oliveira, Arnau Oliver, Alexander F. I. Osman, Yu-Nian Ou, Sebastien Ourselin, Nikos Paragios, Moo Sung Park, Brad Paschke, J. Gregory Pauloski, Kamlesh Pawar, Nick Pawlowski, Linmin Pei, Suting Peng, Silvio M. Pereira, Julian Perez-Beteta, Victor M. Perez-Garcia, Simon Pezold, Bao Pham, Ashish Phophalia, Gemma Piella, G. N. Pillai, Marie Piraud, Maxim Pisov, Anmol Popli, Michael P. Pound, Reza Pourreza, Prateek Prasanna, Vesna Prkovska, Tony P. Pridmore, Santi Puch, Élodie Puybareau, Buyue Qian, Xu Qiao, Martin Rajchl, Swapnil Rane, Michael Rebsamen, Hongliang Ren, Xuhua Ren, Karthik Revanuru, Mina Rezaei, Oliver Rippel, Luis Carlos Rivera, Charlotte Robert, Bruce Rosen, Daniel Rueckert, Mohammed Safwan, Mostafa Salem, Joaquim Salvi, Irina Sanchez, Irina Sánchez, Heitor M. Santos, Emmett Sartor, Dawid Schellingerhout, Klaudius Scheufele, Matthew R. Scott, Artur A. Scussel, Sara Sedlar, Juan Pablo Serrano-Rubio, N. Jon Shah, Nameetha Shah, Mazhar Shaikh, B. Uma Shankar, Zeina Shboul, Haipeng Shen, Dinggang Shen, Linlin Shen, Haocheng Shen, Varun Shenoy, Feng Shi, Hyung Eun Shin, Hai Shu, Diana Sima, M Sinclair, Orjan Smedby, James M. Snyder, Mohammadreza Soltaninejad, Guidong Song, Mehul Soni, Jean Stawiaski, Shashank Subramanian, Li Sun, Roger Sun, Jiawei Sun, Kay Sun, Yu Sun, Guoxia Sun, Shuang Sun, Yannick R Suter, Laszlo Szilagyi, Sanjay Talbar, DaCheng Tao, Zhongzhao Teng, Siddhesh Thakur, Meenakshi H Thakur, Sameer Tharakan, Pallavi Tiwari, Guillaume Tochon, Tuan Tran, Yuhsiang M. Tsai, Kuan-Lun Tseng, Tran Anh Tuan, Vadim Turlapov, Nicholas Tustison, Maria Vakalopoulou, Sergi Valverde, Rami Vanguri, Evgeny Vasiliev, Jonathan Ventura, Luis Vera, Tom Vercauteren, C. A. Verrastro, Lasitha Vidyaratne, Veronica Vilaplana, Ajeet Vivekanandan, Qian Wang, Chiatse J. Wang, Wei-Chung Wang, Duo Wang, Ruixuan Wang, Yuanyuan Wang, Chunliang Wang, Guotai Wang, Ning Wen, Xin Wen, Leon Weninger, Wolfgang Wick, Shaocheng Wu, Qiang Wu, Yihong Wu, Yong Xia, Yanwu Xu, Xiaowen Xu, Peiyuan Xu, Tsai-Ling Yang, Xiaoping Yang, Hao-Yu Yang, Junlin Yang, Haojin Yang, Guang Yang, Hongdou Yao, Xujiong Ye, Changchang Yin, Brett Young-Moxon, Jinhua Yu, Xiangyu Yue, Songtao Zhang, Angela Zhang, Kun Zhang, Xue-jie Zhang, Lichi Zhang, Xiaoyue Zhang, Yazhuo Zhang, Lei Zhang, Jian-Guo Zhang, Xiang Zhang, Tianhao Zhang, Sicheng Zhao, Yu Zhao, Xiaomei Zhao, Liang Zhao, Yefeng Zheng, Liming Zhong, Chenhong Zhou, Xiaobing Zhou, Fan Zhou, Hongtu Zhu, Jin Zhu, Ying Zhuge, Weiwei Zong, Jayashree Kalpathy-Cramer, Keyvan Farahani, Christos Davatzikos, Koen van Leemput, Bjoern Menze
This study assesses the state-of-the-art machine learning (ML) methods used for brain tumor image analysis in mpMRI scans, during the last seven instances of the International Brain Tumor Segmentation (BraTS) challenge, i. e., 2012-2018.
1 code implementation • 20 Jul 2018 • Po-Yu Kao, Thuyen Ngo, Angela Zhang, Jefferson W. Chen, B. S. Manjunath
For segmentation, we utilize an existing brain parcellation atlas in the MNI152 1mm space and map this parcellation to each individual subject data.
no code implementations • 1 Mar 2018 • Arjuna Flenner, Lawrence Peterson, Jason Bunk, Tajuddin Manhar Mohammed, Lakshmanan Nataraj, B. S. Manjunath
A deep learning classifier is then used to generate a heatmap that indicates if the image block has been resampled.
no code implementations • 9 Feb 2018 • Tajuddin Manhar Mohammed, Jason Bunk, Lakshmanan Nataraj, Jawadul H. Bappy, Arjuna Flenner, B. S. Manjunath, Shivkumar Chandrasekaran, Amit K. Roy-Chowdhury, Lawrence Peterson
Realistic image forgeries involve a combination of splicing, resampling, cloning, region removal and other methods.
1 code implementation • 20 Dec 2017 • Oytun Ulutan, Benjamin S. Riggan, Nasser M. Nasrabadi, B. S. Manjunath
We propose a new order preserving bilinear framework that exploits low-resolution video for person detection in a multi-modal setting using deep neural networks.
no code implementations • ICCV 2017 • Jawadul H. Bappy, Amit K. Roy-Chowdhury, Jason Bunk, Lakshmanan Nataraj, B. S. Manjunath
In order to formulate the framework, we employ a hybrid CNN-LSTM model to capture discriminative features between manipulated and non-manipulated regions.
no code implementations • ICCV 2017 • Utkarsh Gaur, B. S. Manjunath
We also leverage a key correspondence problem insight that the geometric structure between object parts is consistent across multiple object instances.
no code implementations • 5 Aug 2017 • Wenhui Jiang, Thuyen Ngo, B. S. Manjunath, Zhicheng Zhao, Fei Su
This region selection procedure is further integrated into a CNN-based weakly supervised detection (WSD) framework, and can be performed in each stochastic gradient descent mini-batch during training.
1 code implementation • 3 Jul 2017 • Jason Bunk, Jawadul H. Bappy, Tajuddin Manhar Mohammed, Lakshmanan Nataraj, Arjuna Flenner, B. S. Manjunath, Shivkumar Chandrasekaran, Amit K. Roy-Chowdhury, Lawrence Peterson
In this paper, we propose two methods to detect and localize image manipulations based on a combination of resampling features and deep learning.
no code implementations • 28 Jun 2017 • Carlos Torres, Kenneth Rose, Jeffrey C. Fried, B. S. Manjunath
There is a small number of clinical studies, which use manual analysis of sleep poses and motion recordings to support medical benefits of patient positioning and motion monitoring.
no code implementations • 16 Oct 2016 • Archith J. Bency, Swati Rallapalli, Raghu K. Ganti, Mudhakar Srivatsa, B. S. Manjunath
Spatial Auto-Regression (SAR) is a common tool used to model such data, where the spatial contiguity matrix (W) encodes the spatial correlations.
no code implementations • CVPR 2016 • Amir M. Rahimi, Raphael Ruschel, B. S. Manjunath
We present a real-time body orientation estimation in a micro-Unmanned Air Vehicle video stream.
no code implementations • 1 Mar 2016 • Archith J. Bency, Heesung Kwon, Hyungtae Lee, S. Karthikeyan, B. S. Manjunath
Object localization is an important computer vision problem with a variety of applications.
Ranked #4 on
Weakly Supervised Object Detection
on COCO
no code implementations • 7 Feb 2016 • Carlos Torres, Victor Fragoso, Scott D. Hammond, Jeffrey C. Fried, B. S. Manjunath
This work addresses these issues by introducing a new method and a new system for robust automated classification of sleep poses in an Intensive Care Unit (ICU) environment.
no code implementations • 5 Feb 2016 • Archith J. Bency, S. Karthikeyan, Carter De Leo, Santhoshkumar Sunderrajan, B. S. Manjunath
In this paper, we present a method to leverage human knowledge in the form of annotated video libraries in a novel search and retrieval based setting to track objects in unseen video sequences.
no code implementations • ICCV 2015 • Niloufar Pourian, S. Karthikeyan, B. S. Manjunath
We present a weakly-supervised approach to semantic segmentation.
no code implementations • CVPR 2015 • Karthikeyan Shanmuga Vadivel, Thuyen Ngo, Miguel Eckstein, B. S. Manjunath
The proposed algorithm extracts dominant visual tracks using eye tracking data from multiple subjects on a video sequence by a combination of mean-shift clustering and Hungarian algorithm.