no code implementations • NeurIPS 2021 • Ba-Hien Tran, Simone Rossi, Dimitrios Milios, Pietro Michiardi, Edwin V. Bonilla, Maurizio Filippone
We develop a novel method for carrying out model selection for Bayesian autoencoders (BAEs) by means of prior hyper-parameter optimization.
no code implementations • 25 Nov 2020 • Ba-Hien Tran, Simone Rossi, Dimitrios Milios, Maurizio Filippone
This poses a challenge because modern neural networks are characterized by a large number of parameters, and the choice of these priors has an uncontrolled effect on the induced functional prior, which is the distribution of the functions obtained by sampling the parameters from their prior distribution.
no code implementations • pproximateinference AABI Symposium 2021 • Ba-Hien Tran, Dimitrios Milios, Simone Rossi, Maurizio Filippone
The Bayesian treatment of neural networks dictates that a prior distribution is considered over the weight and bias parameters of the network.