no code implementations • 3 Jun 2019 • Róbert Busa-Fekete, Dimitris Fotakis, Balázs Szörényi, Manolis Zampetakis
The main result of the paper is a tight sample complexity bound for learning Mallows and Generalized Mallows Model.
no code implementations • 6 Feb 2019 • Alina Beygelzimer, Dávid Pál, Balázs Szörényi, Devanathan Thiruvenkatachari, Chen-Yu Wei, Chicheng Zhang
Under the more challenging weak linear separability condition, we design an efficient algorithm with a mistake bound of $\min (2^{\widetilde{O}(K \log^2 (1/\gamma))}, 2^{\widetilde{O}(\sqrt{1/\gamma} \log K)})$.
no code implementations • 16 Jan 2019 • Alexander Golovnev, Dávid Pál, Balázs Szörényi
Learning with the knowledge of the distribution (a. k. a.
no code implementations • 4 Apr 2017 • Gal Dalal, Balázs Szörényi, Gugan Thoppe, Shie Mannor
TD(0) is one of the most commonly used algorithms in reinforcement learning.
no code implementations • NeurIPS 2015 • Balázs Szörényi, Róbert Busa-Fekete, Adil Paul, Eyke Hüllermeier
We study the problem of online rank elicitation, assuming that rankings of a set of alternatives obey the Plackett-Luce distribution.
no code implementations • NeurIPS 2015 • Róbert Busa-Fekete, Balázs Szörényi, Krzysztof Dembczynski, Eyke Hüllermeier
In this paper, we study the problem of F-measure maximization in the setting of online learning.
no code implementations • NeurIPS 2014 • Balázs Szörényi, Gunnar Kedenburg, Remi Munos
We consider the problem of online planning in a Markov decision process with discounted rewards for any given initial state.