Search Results for author: Bartosz Putrycz

Found 6 papers, 2 papers with code

BASE TTS: Lessons from building a billion-parameter Text-to-Speech model on 100K hours of data

no code implementations12 Feb 2024 Mateusz Łajszczak, Guillermo Cámbara, Yang Li, Fatih Beyhan, Arent van Korlaar, Fan Yang, Arnaud Joly, Álvaro Martín-Cortinas, Ammar Abbas, Adam Michalski, Alexis Moinet, Sri Karlapati, Ewa Muszyńska, Haohan Guo, Bartosz Putrycz, Soledad López Gambino, Kayeon Yoo, Elena Sokolova, Thomas Drugman

Echoing the widely-reported "emergent abilities" of large language models when trained on increasing volume of data, we show that BASE TTS variants built with 10K+ hours and 500M+ parameters begin to demonstrate natural prosody on textually complex sentences.

Decoder Disentanglement +2

Enhancing audio quality for expressive Neural Text-to-Speech

no code implementations13 Aug 2021 Abdelhamid Ezzerg, Adam Gabrys, Bartosz Putrycz, Daniel Korzekwa, Daniel Saez-Trigueros, David McHardy, Kamil Pokora, Jakub Lachowicz, Jaime Lorenzo-Trueba, Viacheslav Klimkov

Artificial speech synthesis has made a great leap in terms of naturalness as recent Text-to-Speech (TTS) systems are capable of producing speech with similar quality to human recordings.

Acoustic Modelling Speech Synthesis +1

Universal Neural Vocoding with Parallel WaveNet

no code implementations1 Feb 2021 Yunlong Jiao, Adam Gabrys, Georgi Tinchev, Bartosz Putrycz, Daniel Korzekwa, Viacheslav Klimkov

We present a universal neural vocoder based on Parallel WaveNet, with an additional conditioning network called Audio Encoder.

Speech Synthesis

Towards achieving robust universal neural vocoding

1 code implementation4 Jul 2019 Jaime Lorenzo-Trueba, Thomas Drugman, Javier Latorre, Thomas Merritt, Bartosz Putrycz, Roberto Barra-Chicote, Alexis Moinet, Vatsal Aggarwal

This vocoder is shown to be capable of generating speech of consistently good quality (98% relative mean MUSHRA when compared to natural speech) regardless of whether the input spectrogram comes from a speaker or style seen during training or from an out-of-domain scenario when the recording conditions are studio-quality.

Robust universal neural vocoding

8 code implementations15 Nov 2018 Jaime Lorenzo-Trueba, Thomas Drugman, Javier Latorre, Thomas Merritt, Bartosz Putrycz, Roberto Barra-Chicote

This paper introduces a robust universal neural vocoder trained with 74 speakers (comprised of both genders) coming from 17 languages.

Text to Speech

Cannot find the paper you are looking for? You can Submit a new open access paper.