1 code implementation • 11 Oct 2022 • Mateusz Żarski, Bartosz Wójcik, Jarosław A. Miszczak, Bartłomiej Blachowski, Mariusz Ostrowski
The area affected by the earthquake is vast and often difficult to entirely cover, and the earthquake itself is a sudden event that causes multiple defects simultaneously, that cannot be effectively traced using traditional, manual methods.
no code implementations • 28 Jun 2022 • Bartosz Wójcik, Jacek Grela, Marek Śmieja, Krzysztof Misztal, Jacek Tabor
The proposed classifier is confident only if a single class has a high probability and other probabilities are negligible.
1 code implementation • 16 Jun 2022 • Maciej Wołczyk, Karol J. Piczak, Bartosz Wójcik, Łukasz Pustelnik, Paweł Morawiecki, Jacek Tabor, Tomasz Trzciński, Przemysław Spurek
We introduce a new training paradigm that enforces interval constraints on neural network parameter space to control forgetting.
1 code implementation • 21 Jun 2021 • Bartosz Wójcik, Mateusz Żarski, Kamil Książek, Jarosław Adam Miszczak, Mirosław Jan Skibniewski
In recent years, a lot of attention is paid to deep learning methods in the context of vision-based construction site safety systems, especially regarding personal protective equipment.
1 code implementation • NeurIPS 2021 • Maciej Wołczyk, Bartosz Wójcik, Klaudia Bałazy, Igor Podolak, Jacek Tabor, Marek Śmieja, Tomasz Trzciński
The problem of reducing processing time of large deep learning models is a fundamental challenge in many real-world applications.
no code implementations • 17 Jun 2020 • Bartosz Wójcik, Paweł Morawiecki, Marek Śmieja, Tomasz Krzyżek, Przemysław Spurek, Jacek Tabor
We present a mechanism for detecting adversarial examples based on data representations taken from the hidden layers of the target network.
1 code implementation • 26 Apr 2020 • Mateusz Żarski, Bartosz Wójcik, Jarosław Adam Miszczak
Monitoring the technical condition of infrastructure is a crucial element to its maintenance.
1 code implementation • 17 Apr 2020 • Bartosz Wójcik, Maciej Wołczyk, Klaudia Bałazy, Jacek Tabor
We develop a fast end-to-end method for training lightweight neural networks using multiple classifier heads.
1 code implementation • 30 May 2019 • Przemysław Spurek, Szymon Knop, Jacek Tabor, Igor Podolak, Bartosz Wójcik
Several deep models, esp.
1 code implementation • 20 Feb 2019 • Bartosz Wójcik, Łukasz Maziarka, Jacek Tabor
In this paper, we propose a simple, fast and easy to implement algorithm LOSSGRAD (locally optimal step-size in gradient descent), which automatically modifies the step-size in gradient descent during neural networks training.