1 code implementation • 19 Jul 2024 • Bartłomiej Krzepkowski, Monika Michaluk, Franciszek Szarwacki, Piotr Kubaty, Jary Pomponi, Tomasz Trzciński, Bartosz Wójcik, Kamil Adamczewski
Early exits are an important efficiency mechanism integrated into deep neural networks that allows for the termination of the network's forward pass before processing through all its layers.
1 code implementation • 15 Dec 2023 • Bartosz Wójcik, Alessio Devoto, Karol Pustelnik, Pasquale Minervini, Simone Scardapane
The computational cost of transformer models makes them inefficient in low-latency or low-power applications.
no code implementations • 6 Oct 2023 • Filip Szatkowski, Bartosz Wójcik, Mikołaj Piórczyński, Simone Scardapane
Transformer models can face practical limitations due to their high computational requirements.
no code implementations • 21 Sep 2023 • Adrian Suwała, Bartosz Wójcik, Magdalena Proszewska, Jacek Tabor, Przemysław Spurek, Marek Śmieja
Conditional GANs are frequently used for manipulating the attributes of face images, such as expression, hairstyle, pose, or age.
1 code implementation • 11 Oct 2022 • Mateusz Żarski, Bartosz Wójcik, Jarosław A. Miszczak, Bartłomiej Blachowski, Mariusz Ostrowski
The area affected by the earthquake is vast and often difficult to entirely cover, and the earthquake itself is a sudden event that causes multiple defects simultaneously, that cannot be effectively traced using traditional, manual methods.
no code implementations • 28 Jun 2022 • Bartosz Wójcik, Jacek Grela, Marek Śmieja, Krzysztof Misztal, Jacek Tabor
The proposed classifier is confident only if a single class has a high probability and other probabilities are negligible.
2 code implementations • 16 Jun 2022 • Maciej Wołczyk, Karol J. Piczak, Bartosz Wójcik, Łukasz Pustelnik, Paweł Morawiecki, Jacek Tabor, Tomasz Trzciński, Przemysław Spurek
We introduce a new training paradigm that enforces interval constraints on neural network parameter space to control forgetting.
1 code implementation • 21 Jun 2021 • Bartosz Wójcik, Mateusz Żarski, Kamil Książek, Jarosław Adam Miszczak, Mirosław Jan Skibniewski
In recent years, a lot of attention is paid to deep learning methods in the context of vision-based construction site safety systems, especially regarding personal protective equipment.
1 code implementation • NeurIPS 2021 • Maciej Wołczyk, Bartosz Wójcik, Klaudia Bałazy, Igor Podolak, Jacek Tabor, Marek Śmieja, Tomasz Trzciński
The problem of reducing processing time of large deep learning models is a fundamental challenge in many real-world applications.
no code implementations • 17 Jun 2020 • Bartosz Wójcik, Paweł Morawiecki, Marek Śmieja, Tomasz Krzyżek, Przemysław Spurek, Jacek Tabor
We present a mechanism for detecting adversarial examples based on data representations taken from the hidden layers of the target network.
1 code implementation • 26 Apr 2020 • Mateusz Żarski, Bartosz Wójcik, Jarosław Adam Miszczak
Monitoring the technical condition of infrastructure is a crucial element to its maintenance.
1 code implementation • 17 Apr 2020 • Bartosz Wójcik, Maciej Wołczyk, Klaudia Bałazy, Jacek Tabor
We develop a fast end-to-end method for training lightweight neural networks using multiple classifier heads.
1 code implementation • 30 May 2019 • Przemysław Spurek, Szymon Knop, Jacek Tabor, Igor Podolak, Bartosz Wójcik
Several deep models, esp.
1 code implementation • 20 Feb 2019 • Bartosz Wójcik, Łukasz Maziarka, Jacek Tabor
In this paper, we propose a simple, fast and easy to implement algorithm LOSSGRAD (locally optimal step-size in gradient descent), which automatically modifies the step-size in gradient descent during neural networks training.