2 code implementations • 8 Jan 2024 • Jason Yim, Andrew Campbell, Emile Mathieu, Andrew Y. K. Foong, Michael Gastegger, José Jiménez-Luna, Sarah Lewis, Victor Garcia Satorras, Bastiaan S. Veeling, Frank Noé, Regina Barzilay, Tommi S. Jaakkola
Protein design often begins with the knowledge of a desired function from a motif which motif-scaffolding aims to construct a functional protein around.
2 code implementations • 8 Oct 2023 • Jason Yim, Andrew Campbell, Andrew Y. K. Foong, Michael Gastegger, José Jiménez-Luna, Sarah Lewis, Victor Garcia Satorras, Bastiaan S. Veeling, Regina Barzilay, Tommi Jaakkola, Frank Noé
We present FrameFlow, a method for fast protein backbone generation using SE(3) flow matching.
no code implementations • 13 Sep 2023 • Marco Federici, Patrick Forré, Ryota Tomioka, Bastiaan S. Veeling
Markov processes are widely used mathematical models for describing dynamic systems in various fields.
no code implementations • 26 May 2021 • Lizeth Gonzalez-Carabarin, Iris A. M. Huijben, Bastiaan S. Veeling, Alexandre Schmid, Ruud J. G. van Sloun
Relevantly, the non-magnitude-based nature of DPP allows for joint optimization of pruning and weight quantization in order to even further compress the network, which we show as well.
no code implementations • 1 Jan 2021 • Lizeth Gonzalez Carabarin, Iris A.M. Huijben, Bastiaan S. Veeling, Alexandre Schmid, Ruud Van Sloun
Deep Learning (DL) models are known to be heavily over-parametrized, resulting in a large memory footprint and power consumption.
no code implementations • 1 Jan 2021 • Hans van Gorp, Iris A.M. Huijben, Bastiaan S. Veeling, Nicola Pezzotti, Ruud Van Sloun
Subsampling a signal of interest can reduce costly data transfer, battery drain, radiation exposure and acquisition time in a wide range of problems.
1 code implementation • ICLR 2020 • Iris A. M. Huijben, Bastiaan S. Veeling, Ruud J. G. van Sloun
The field of deep learning is commonly concerned with optimizing predictive models using large pre-acquired datasets of densely sampled datapoints or signals.
no code implementations • 22 Apr 2020 • Iris A. M. Huijben, Bastiaan S. Veeling, Ruud J. G. van Sloun
Compressed sensing (CS) MRI relies on adequate undersampling of the k-space to accelerate the acquisition without compromising image quality.
no code implementations • ICML 2020 • Jakub Swiatkowski, Kevin Roth, Bastiaan S. Veeling, Linh Tran, Joshua V. Dillon, Jasper Snoek, Stephan Mandt, Tim Salimans, Rodolphe Jenatton, Sebastian Nowozin
Variational Bayesian Inference is a popular methodology for approximating posterior distributions over Bayesian neural network weights.
1 code implementation • ICML 2020 • Florian Wenzel, Kevin Roth, Bastiaan S. Veeling, Jakub Świątkowski, Linh Tran, Stephan Mandt, Jasper Snoek, Tim Salimans, Rodolphe Jenatton, Sebastian Nowozin
In this work we cast doubt on the current understanding of Bayes posteriors in popular deep neural networks: we demonstrate through careful MCMC sampling that the posterior predictive induced by the Bayes posterior yields systematically worse predictions compared to simpler methods including point estimates obtained from SGD.
1 code implementation • 14 Jan 2020 • Linh Tran, Bastiaan S. Veeling, Kevin Roth, Jakub Swiatkowski, Joshua V. Dillon, Jasper Snoek, Stephan Mandt, Tim Salimans, Sebastian Nowozin, Rodolphe Jenatton
As a result, the diversity of the ensemble predictions, stemming from each member, is lost.
no code implementations • 25 Sep 2019 • Jakub Świątkowski, Kevin Roth, Bastiaan S. Veeling, Linh Tran, Joshua V. Dillon, Jasper Snoek, Stephan Mandt, Tim Salimans, Rodolphe Jenatton, Sebastian Nowozin
Variational Bayesian Inference is a popular methodology for approximating posterior distributions in Bayesian neural networks.
no code implementations • 15 Aug 2019 • Iris A. M. Huijben, Bastiaan S. Veeling, Kees Janse, Massimo Mischi, Ruud J. G. van Sloun
Compressed sensing emerged as a popular framework for sparse signal reconstruction from a small set of compressed measurements.
1 code implementation • NeurIPS 2019 • Sindy Löwe, Peter O'Connor, Bastiaan S. Veeling
We propose a novel deep learning method for local self-supervised representation learning that does not require labels nor end-to-end backpropagation but exploits the natural order in data instead.
Ranked #59 on
Image Classification
on STL-10
Representation Learning
Self-Supervised Audio Classification
+2
no code implementations • 12 Oct 2018 • Bastiaan S. Veeling, Rianne van den Berg, Max Welling
High-risk domains require reliable confidence estimates from predictive models.
no code implementations • 2 Jul 2018 • Jasper Linmans, Jim Winkens, Bastiaan S. Veeling, Taco S. Cohen, Max Welling
The group equivariant CNN framework is extended for segmentation by introducing a new equivariant (G->Z2)-convolution that transforms feature maps on a group to planar feature maps.
4 code implementations • 8 Jun 2018 • Bastiaan S. Veeling, Jasper Linmans, Jim Winkens, Taco Cohen, Max Welling
We propose a new model for digital pathology segmentation, based on the observation that histopathology images are inherently symmetric under rotation and reflection.
Ranked #7 on
Breast Tumour Classification
on PCam
no code implementations • 5 Apr 2018 • Stojan Trajanovski, Dimitrios Mavroeidis, Christine Leon Swisher, Binyam Gebrekidan Gebre, Bastiaan S. Veeling, Rafael Wiemker, Tobias Klinder, Amir Tahmasebi, Shawn M. Regis, Christoph Wald, Brady J. McKee, Sebastian Flacke, Heber MacMahon, Homer Pien
Importance: Lung cancer is the leading cause of cancer mortality in the US, responsible for more deaths than breast, prostate, colon and pancreas cancer combined and it has been recently demonstrated that low-dose computed tomography (CT) screening of the chest can significantly reduce this death rate.