Search Results for author: Beatriz Borges

Found 5 papers, 3 papers with code

Could ChatGPT get an Engineering Degree? Evaluating Higher Education Vulnerability to AI Assistants

no code implementations7 Aug 2024 Beatriz Borges, Negar Foroutan, Deniz Bayazit, Anna Sotnikova, Syrielle Montariol, Tanya Nazaretzky, Mohammadreza Banaei, Alireza Sakhaeirad, Philippe Servant, Seyed Parsa Neshaei, Jibril Frej, Angelika Romanou, Gail Weiss, Sepideh Mamooler, Zeming Chen, Simin Fan, Silin Gao, Mete Ismayilzada, Debjit Paul, Alexandre Schöpfer, Andrej Janchevski, Anja Tiede, Clarence Linden, Emanuele Troiani, Francesco Salvi, Freya Behrens, Giacomo Orsi, Giovanni Piccioli, Hadrien Sevel, Louis Coulon, Manuela Pineros-Rodriguez, Marin Bonnassies, Pierre Hellich, Puck van Gerwen, Sankalp Gambhir, Solal Pirelli, Thomas Blanchard, Timothée Callens, Toni Abi Aoun, Yannick Calvino Alonso, Yuri Cho, Alberto Chiappa, Antonio Sclocchi, Étienne Bruno, Florian Hofhammer, Gabriel Pescia, Geovani Rizk, Leello Dadi, Lucas Stoffl, Manoel Horta Ribeiro, Matthieu Bovel, Yueyang Pan, Aleksandra Radenovic, Alexandre Alahi, Alexander Mathis, Anne-Florence Bitbol, Boi Faltings, Cécile Hébert, Devis Tuia, François Maréchal, George Candea, Giuseppe Carleo, Jean-Cédric Chappelier, Nicolas Flammarion, Jean-Marie Fürbringer, Jean-Philippe Pellet, Karl Aberer, Lenka Zdeborová, Marcel Salathé, Martin Jaggi, Martin Rajman, Mathias Payer, Matthieu Wyart, Michael Gastpar, Michele Ceriotti, Ola Svensson, Olivier Lévêque, Paolo Ienne, Rachid Guerraoui, Robert West, Sanidhya Kashyap, Valerio Piazza, Viesturs Simanis, Viktor Kuncak, Volkan Cevher, Philippe Schwaller, Sacha Friedli, Patrick Jermann, Tanja Käser, Antoine Bosselut

We investigate the potential scale of this vulnerability by measuring the degree to which AI assistants can complete assessment questions in standard university-level STEM courses.

Let Me Teach You: Pedagogical Foundations of Feedback for Language Models

no code implementations1 Jul 2023 Beatriz Borges, Niket Tandon, Tanja Käser, Antoine Bosselut

Natural Language Feedback (NLF) is an increasingly popular mechanism for aligning Large Language Models (LLMs) to human preferences.

Diversity

PeaCoK: Persona Commonsense Knowledge for Consistent and Engaging Narratives

1 code implementation3 May 2023 Silin Gao, Beatriz Borges, Soyoung Oh, Deniz Bayazit, Saya Kanno, Hiromi Wakaki, Yuki Mitsufuji, Antoine Bosselut

They must also learn to maintain consistent speaker personas for themselves throughout the narrative, so that their counterparts feel involved in a realistic conversation or story.

Knowledge Graphs World Knowledge

REFINER: Reasoning Feedback on Intermediate Representations

1 code implementation4 Apr 2023 Debjit Paul, Mete Ismayilzada, Maxime Peyrard, Beatriz Borges, Antoine Bosselut, Robert West, Boi Faltings

Language models (LMs) have recently shown remarkable performance on reasoning tasks by explicitly generating intermediate inferences, e. g., chain-of-thought prompting.

Laughing Heads: Can Transformers Detect What Makes a Sentence Funny?

1 code implementation19 May 2021 Maxime Peyrard, Beatriz Borges, Kristina Gligorić, Robert West

We make progress in both respects by training and analyzing transformer-based humor recognition models on a recently introduced dataset consisting of minimal pairs of aligned sentences, one serious, the other humorous.

Benchmarking Sentence

Cannot find the paper you are looking for? You can Submit a new open access paper.