Search Results for author: Benjamin Muller

Found 21 papers, 10 papers with code

Byte Latent Transformer: Patches Scale Better Than Tokens

1 code implementation13 Dec 2024 Artidoro Pagnoni, Ram Pasunuru, Pedro Rodriguez, John Nguyen, Benjamin Muller, Margaret Li, Chunting Zhou, Lili Yu, Jason Weston, Luke Zettlemoyer, Gargi Ghosh, Mike Lewis, Ari Holtzman, Srinivasan Iyer

We introduce the Byte Latent Transformer (BLT), a new byte-level LLM architecture that, for the first time, matches tokenization-based LLM performance at scale with significant improvements in inference efficiency and robustness.

Layer Swapping for Zero-Shot Cross-Lingual Transfer in Large Language Models

no code implementations2 Oct 2024 Lucas Bandarkar, Benjamin Muller, Pritish Yuvraj, Rui Hou, Nayan Singhal, Hongjiang Lv, Bing Liu

We focus on mathematical reasoning and without in-language math data, facilitate cross-lingual transfer by composing language and math capabilities.

Math Mathematical Reasoning +1

Cross-Lingual Open-Domain Question Answering with Answer Sentence Generation

no code implementations14 Oct 2021 Benjamin Muller, Luca Soldaini, Rik Koncel-Kedziorski, Eric Lind, Alessandro Moschitti

Our cross-lingual generative system outperforms answer sentence selection baselines for all 5 languages and monolingual generative pipelines for three out of five languages studied.

Answer Generation Generative Question Answering +3

First Align, then Predict: Understanding the Cross-Lingual Ability of Multilingual BERT

1 code implementation EACL 2021 Benjamin Muller, Yanai Elazar, Benoît Sagot, Djamé Seddah

Such transfer emerges by fine-tuning on a task of interest in one language and evaluating on a distinct language, not seen during the fine-tuning.

Language Modeling Language Modelling +1

Les mod\`eles de langue contextuels Camembert pour le fran\ccais : impact de la taille et de l'h\'et\'erog\'en\'eit\'e des donn\'ees d'entrainement (C AMEM BERT Contextual Language Models for French: Impact of Training Data Size and Heterogeneity )

no code implementations JEPTALNRECITAL 2020 Louis Martin, Benjamin Muller, Pedro Javier Ortiz Su{\'a}rez, Yoann Dupont, Laurent Romary, {\'E}ric Villemonte de la Clergerie, Beno{\^\i}t Sagot, Djam{\'e} Seddah

L{'}utilisation pratique de ces mod{\`e}les {---} dans toutes les langues sauf l{'}anglais {---} {\'e}tait donc limit{\'e}e. La sortie r{\'e}cente de plusieurs mod{\`e}les monolingues fond{\'e}s sur BERT (Devlin et al., 2019), notamment pour le fran{\c{c}}ais, a d{\'e}montr{\'e} l{'}int{\'e}r{\^e}t de ces mod{\`e}les en am{\'e}liorant l{'}{\'e}tat de l{'}art pour toutes les t{\^a}ches {\'e}valu{\'e}es.

es-en SENTS

Enhancing BERT for Lexical Normalization

no code implementations WS 2019 Benjamin Muller, Benoit Sagot, Djam{\'e} Seddah

In this article, focusing on User Generated Content (UGC), we study the ability of BERT to perform lexical normalisation.

Language Modeling Language Modelling +1

ELMoLex: Connecting ELMo and Lexicon Features for Dependency Parsing

no code implementations CONLL 2018 Ganesh Jawahar, Benjamin Muller, Amal Fethi, Louis Martin, {\'E}ric Villemonte de la Clergerie, Beno{\^\i}t Sagot, Djam{\'e} Seddah

We augment the deep Biaffine (BiAF) parser (Dozat and Manning, 2016) with novel features to perform competitively: we utilize an indomain version of ELMo features (Peters et al., 2018) which provide context-dependent word representations; we utilize disambiguated, embedded, morphosyntactic features from lexicons (Sagot, 2018), which complements the existing feature set.

Dependency Parsing Language Modeling +1

Cannot find the paper you are looking for? You can Submit a new open access paper.