no code implementations • NAACL (ACL) 2022 • Antoine Simoulin, Benoit Crabbé
As a result, the sentence embedding is computed according to an interpretable linguistic pattern and may be used on any downstream task.
no code implementations • ACL 2022 • Bingzhi Li, Guillaume Wisniewski, Benoit Crabbé
This work addresses the question of the localization of syntactic information encoded in the transformers representations.
no code implementations • JEP/TALN/RECITAL 2021 • Antoine Simoulin, Benoit Crabbé
Ces architectures sont en particulier pré-entraînées sur des tâches auto-supervisées et sont ainsi spécifiques pour une langue donnée.
no code implementations • JEP/TALN/RECITAL 2021 • Loïc Grobol, Benoit Crabbé
L’analyseur s’appuie sur de riches représentations lexicales issues notamment de BERT et de FASTTEXT.
no code implementations • EMNLP 2021 • Bingzhi Li, Guillaume Wisniewski, Benoit Crabbé
Many recent works have demonstrated that unsupervised sentence representations of neural networks encode syntactic information by observing that neural language models are able to predict the agreement between a verb and its subject.
no code implementations • EACL 2021 • Antoine Simoulin, Benoit Crabbé
We assume structure is crucial to build consistent representations as we expect sentence meaning to be a function from both syntax and semantic aspects.