no code implementations • 22 Feb 2024 • Francisco J. R. Ruiz, Tuomas Laakkonen, Johannes Bausch, Matej Balog, Mohammadamin Barekatain, Francisco J. H. Heras, Alexander Novikov, Nathan Fitzpatrick, Bernardino Romera-Paredes, John van de Wetering, Alhussein Fawzi, Konstantinos Meichanetzidis, Pushmeet Kohli
A key challenge in realizing fault-tolerant quantum computers is circuit optimization.
2 code implementations • Nature 2022 • Alhussein Fawzi, Matej Balog, Aja Huang, Thomas Hubert, Bernardino Romera-Paredes, Mohammadamin Barekatain, Alexander Novikov, Francisco J. R. Ruiz, Julian Schrittwieser, Grzegorz Swirszcz, David Silver, Demis Hassabis, Pushmeet Kohli
Particularly relevant is the case of 4 × 4 matrices in a finite field, where AlphaTensor’s algorithm improves on Strassen’s two-level algorithm for the first time, to our knowledge, since its discovery 50 years ago2.
5 code implementations • Nature 2021 • John Jumper, Richard Evans, Alexander Pritzel, Tim Green, Michael Figurnov, Olaf Ronneberger, Kathryn Tunyasuvunakool, Russ Bates, Augustin Žídek, Anna Potapenko, Alex Bridgland, Clemens Meyer, Simon A. A. Kohl, Andrew J. Ballard, Andrew Cowie, Bernardino Romera-Paredes, Stanislav Nikolov, Rishub Jain, Jonas Adler, Trevor Back, Stig Petersen, David Reiman, Ellen Clancy, Michal Zielinski, Martin Steinegger, Michalina Pacholska, Tamas Berghammer, Sebastian Bodenstein, David Silver, Oriol Vinyals, Andrew W. Senior, Koray Kavukcuoglu, Pushmeet Kohli, Demis Hassabis
Accurate computational approaches are needed to address this gap and to enable large-scale structural bioinformatics.
4 code implementations • 30 May 2019 • Simon A. A. Kohl, Bernardino Romera-Paredes, Klaus H. Maier-Hein, Danilo Jimenez Rezende, S. M. Ali Eslami, Pushmeet Kohli, Andrew Zisserman, Olaf Ronneberger
Medical imaging only indirectly measures the molecular identity of the tissue within each voxel, which often produces only ambiguous image evidence for target measures of interest, like semantic segmentation.
2 code implementations • 12 Sep 2018 • Stanislav Nikolov, Sam Blackwell, Alexei Zverovitch, Ruheena Mendes, Michelle Livne, Jeffrey De Fauw, Yojan Patel, Clemens Meyer, Harry Askham, Bernardino Romera-Paredes, Christopher Kelly, Alan Karthikesalingam, Carlton Chu, Dawn Carnell, Cheng Boon, Derek D'Souza, Syed Ali Moinuddin, Bethany Garie, Yasmin McQuinlan, Sarah Ireland, Kiarna Hampton, Krystle Fuller, Hugh Montgomery, Geraint Rees, Mustafa Suleyman, Trevor Back, Cían Hughes, Joseph R. Ledsam, Olaf Ronneberger
We demonstrate the model's clinical applicability by assessing its performance on a test set of 21 CT scans from clinical practice, each with the 21 OARs segmented by two independent experts.
9 code implementations • NeurIPS 2018 • Simon A. A. Kohl, Bernardino Romera-Paredes, Clemens Meyer, Jeffrey De Fauw, Joseph R. Ledsam, Klaus H. Maier-Hein, S. M. Ali Eslami, Danilo Jimenez Rezende, Olaf Ronneberger
To this end we propose a generative segmentation model based on a combination of a U-Net with a conditional variational autoencoder that is capable of efficiently producing an unlimited number of plausible hypotheses.
no code implementations • 3 Dec 2015 • Saumya Jetley, Bernardino Romera-Paredes, Sadeep Jayasumana, Philip Torr
Recent works on zero-shot learning make use of side information such as visual attributes or natural language semantics to define the relations between output visual classes and then use these relationships to draw inference on new unseen classes at test time.
no code implementations • 25 Nov 2015 • Bernardino Romera-Paredes, Philip H. S. Torr
Instance segmentation is the problem of detecting and delineating each distinct object of interest appearing in an image.
1 code implementation • Proceedings of the International Conference on International Conference on Machine Learning 2015 • Bernardino Romera-Paredes, Philip H. S. Torr
Zero-shot learning consists in learning how to recognise new concepts by just having a description of them.
Ranked #8 on Zero-Shot Action Recognition on Olympics
no code implementations • 23 May 2015 • Andreas Maurer, Massimiliano Pontil, Bernardino Romera-Paredes
In particular, focusing on the important example of half-space learning, we derive the regime in which multitask representation learning is beneficial over independent task learning, as a function of the sample size, the number of tasks and the intrinsic data dimensionality.
6 code implementations • ICCV 2015 • Shuai Zheng, Sadeep Jayasumana, Bernardino Romera-Paredes, Vibhav Vineet, Zhizhong Su, Dalong Du, Chang Huang, Philip H. S. Torr
Pixel-level labelling tasks, such as semantic segmentation, play a central role in image understanding.
Ranked #36 on Semantic Segmentation on PASCAL VOC 2012 test
no code implementations • 8 Feb 2014 • Andreas Maurer, Massimiliano Pontil, Bernardino Romera-Paredes
From concentration inequalities for the suprema of Gaussian or Rademacher processes an inequality is derived.
no code implementations • NeurIPS 2013 • Bernardino Romera-Paredes, Massimiliano Pontil
We study the problem of learning a tensor from a set of linear measurements.
no code implementations • 4 Sep 2012 • Andreas Maurer, Massimiliano Pontil, Bernardino Romera-Paredes
We investigate the use of sparse coding and dictionary learning in the context of multitask and transfer learning.