no code implementations • 19 Dec 2024 • Gabriel Béna, Timo Wunderlich, Mahmoud Akl, Bernhard Vogginger, Christian Mayr, Hector Andres Gonzales
Efficient training of neural networks on neuromorphic hardware requires the development of training algorithms that retain the sparsity of spike-based communication during training.
no code implementations • 4 Feb 2024 • Bernhard Vogginger, Amirhossein Rostami, Vaibhav Jain, Sirine Arfa, Andreas Hantsch, David Kappel, Michael Schäfer, Ulrike Faltings, Hector A. Gonzalez, Chen Liu, Christian Mayr, Wolfgang Maaß
In this article, we try to analyze the underlying reasons for this and derive requirements and guidelines to promote neuromorphic systems for efficient and sustainable cloud computing: We first review currently available neuromorphic hardware systems and collect examples where neuromorphic solutions excel conventional AI processing on CPUs and GPUs.
no code implementations • 9 Jan 2024 • Hector A. Gonzalez, Jiaxin Huang, Florian Kelber, Khaleelulla Khan Nazeer, Tim Langer, Chen Liu, Matthias Lohrmann, Amirhossein Rostami, Mark Schöne, Bernhard Vogginger, Timo C. Wunderlich, Yexin Yan, Mahmoud Akl, Christian Mayr
This development is accompanied by a rapid growth of the required computational demands for larger models and more data.
no code implementations • 14 Dec 2023 • Khaleelulla Khan Nazeer, Mark Schöne, Rishav Mukherji, Bernhard Vogginger, Christian Mayr, David Kappel, Anand Subramoney
In this work, we demonstrate the first-ever implementation of a language model on a neuromorphic device - specifically the SpiNNaker 2 chip - based on a recently published event-based architecture called the EGRU.
1 code implementation • 24 Nov 2023 • Jens E. Pedersen, Steven Abreu, Matthias Jobst, Gregor Lenz, Vittorio Fra, Felix C. Bauer, Dylan R. Muir, Peng Zhou, Bernhard Vogginger, Kade Heckel, Gianvito Urgese, Sadasivan Shankar, Terrence C. Stewart, Sadique Sheik, Jason K. Eshraghian
By abstracting away assumptions around discretization and hardware constraints, NIR faithfully captures the computational model, while bridging differences between the evaluated implementation and the underlying mathematical formalism.
1 code implementation • 10 Apr 2023 • Jason Yik, Korneel Van den Berghe, Douwe den Blanken, Younes Bouhadjar, Maxime Fabre, Paul Hueber, Weijie Ke, Mina A Khoei, Denis Kleyko, Noah Pacik-Nelson, Alessandro Pierro, Philipp Stratmann, Pao-Sheng Vincent Sun, Guangzhi Tang, Shenqi Wang, Biyan Zhou, Soikat Hasan Ahmed, George Vathakkattil Joseph, Benedetto Leto, Aurora Micheli, Anurag Kumar Mishra, Gregor Lenz, Tao Sun, Zergham Ahmed, Mahmoud Akl, Brian Anderson, Andreas G. Andreou, Chiara Bartolozzi, Arindam Basu, Petrut Bogdan, Sander Bohte, Sonia Buckley, Gert Cauwenberghs, Elisabetta Chicca, Federico Corradi, Guido de Croon, Andreea Danielescu, Anurag Daram, Mike Davies, Yigit Demirag, Jason Eshraghian, Tobias Fischer, Jeremy Forest, Vittorio Fra, Steve Furber, P. Michael Furlong, William Gilpin, Aditya Gilra, Hector A. Gonzalez, Giacomo Indiveri, Siddharth Joshi, Vedant Karia, Lyes Khacef, James C. Knight, Laura Kriener, Rajkumar Kubendran, Dhireesha Kudithipudi, Shih-Chii Liu, Yao-Hong Liu, Haoyuan Ma, Rajit Manohar, Josep Maria Margarit-Taulé, Christian Mayr, Konstantinos Michmizos, Dylan R. Muir, Emre Neftci, Thomas Nowotny, Fabrizio Ottati, Ayca Ozcelikkale, Priyadarshini Panda, Jongkil Park, Melika Payvand, Christian Pehle, Mihai A. Petrovici, Christoph Posch, Alpha Renner, Yulia Sandamirskaya, Clemens JS Schaefer, André van Schaik, Johannes Schemmel, Samuel Schmidgall, Catherine Schuman, Jae-sun Seo, Sadique Sheik, Sumit Bam Shrestha, Manolis Sifalakis, Amos Sironi, Kenneth Stewart, Matthew Stewart, Terrence C. Stewart, Jonathan Timcheck, Nergis Tömen, Gianvito Urgese, Marian Verhelst, Craig M. Vineyard, Bernhard Vogginger, Amirreza Yousefzadeh, Fatima Tuz Zohora, Charlotte Frenkel, Vijay Janapa Reddi
To address these shortcomings, we present NeuroBench: a benchmark framework for neuromorphic computing algorithms and systems.
1 code implementation • 25 Feb 2022 • Javier López-Randulfe, Nico Reeb, Negin Karimi, Chen Liu, Hector A. Gonzalez, Robin Dietrich, Bernhard Vogginger, Christian Mayr, Alois Knoll
After several decades of continuously optimizing computing systems, the Moore's law is reaching itsend.
no code implementations • 18 Sep 2020 • Yexin Yan, Terrence C. Stewart, Xuan Choo, Bernhard Vogginger, Johannes Partzsch, Sebastian Hoeppner, Florian Kelber, Chris Eliasmith, Steve Furber, Christian Mayr
We implemented two neural network based benchmark tasks on a prototype chip of the second-generation SpiNNaker (SpiNNaker 2) neuromorphic system: keyword spotting and adaptive robotic control.
no code implementations • 30 Mar 2020 • Eric Müller, Sebastian Schmitt, Christian Mauch, Sebastian Billaudelle, Andreas Grübl, Maurice Güttler, Dan Husmann, Joscha Ilmberger, Sebastian Jeltsch, Jakob Kaiser, Johann Klähn, Mitja Kleider, Christoph Koke, José Montes, Paul Müller, Johannes Partzsch, Felix Passenberg, Hartmut Schmidt, Bernhard Vogginger, Jonas Weidner, Christian Mayr, Johannes Schemmel
We present operation and development methodologies implemented for the BrainScaleS-1 neuromorphic architecture and walk through the individual components of BrainScaleS OS constituting the software stack for BrainScaleS-1 platform operation.
no code implementations • 21 Mar 2019 • Sebastian Hoeppner, Bernhard Vogginger, Yexin Yan, Andreas Dixius, Stefan Scholze, Johannes Partzsch, Felix Neumaerker, Stephan Hartmann, Stefan Schiefer, Georg Ellguth, Love Cederstroem, Luis Plana, Jim Garside, Steve Furber, Christian Mayr
By measurement of three neuromorphic benchmarks it is shown that the total PE power consumption can be reduced by 75%, with 80% baseline power reduction and a 50% reduction of energy per neuron and synapse computation, all while maintaining temporary peak system performance to achieve biological real-time operation of the system.
no code implementations • 20 Mar 2019 • Yexin Yan, David Kappel, Felix Neumaerker, Johannes Partzsch, Bernhard Vogginger, Sebastian Hoeppner, Steve Furber, Wolfgang Maass, Robert Legenstein, Christian Mayr
Advances in neuroscience uncover the mechanisms employed by the brain to efficiently solve complex learning tasks with very limited resources.
no code implementations • 17 Mar 2017 • Mihai A. Petrovici, Sebastian Schmitt, Johann Klähn, David Stöckel, Anna Schroeder, Guillaume Bellec, Johannes Bill, Oliver Breitwieser, Ilja Bytschok, Andreas Grübl, Maurice Güttler, Andreas Hartel, Stephan Hartmann, Dan Husmann, Kai Husmann, Sebastian Jeltsch, Vitali Karasenko, Mitja Kleider, Christoph Koke, Alexander Kononov, Christian Mauch, Eric Müller, Paul Müller, Johannes Partzsch, Thomas Pfeil, Stefan Schiefer, Stefan Scholze, Anand Subramoney, Vasilis Thanasoulis, Bernhard Vogginger, Robert Legenstein, Wolfgang Maass, René Schüffny, Christian Mayr, Johannes Schemmel, Karlheinz Meier
Despite being originally inspired by the central nervous system, artificial neural networks have diverged from their biological archetypes as they have been remodeled to fit particular tasks.
1 code implementation • 6 Mar 2017 • Sebastian Schmitt, Johann Klaehn, Guillaume Bellec, Andreas Gruebl, Maurice Guettler, Andreas Hartel, Stephan Hartmann, Dan Husmann, Kai Husmann, Vitali Karasenko, Mitja Kleider, Christoph Koke, Christian Mauch, Eric Mueller, Paul Mueller, Johannes Partzsch, Mihai A. Petrovici, Stefan Schiefer, Stefan Scholze, Bernhard Vogginger, Robert Legenstein, Wolfgang Maass, Christian Mayr, Johannes Schemmel, Karlheinz Meier
In this paper, we demonstrate how iterative training of a hardware-emulated network can compensate for anomalies induced by the analog substrate.
no code implementations • 29 Apr 2014 • Mihai A. Petrovici, Bernhard Vogginger, Paul Müller, Oliver Breitwieser, Mikael Lundqvist, Lyle Muller, Matthias Ehrlich, Alain Destexhe, Anders Lansner, René Schüffny, Johannes Schemmel, Karlheinz Meier
Advancing the size and complexity of neural network models leads to an ever increasing demand for computational resources for their simulation.