no code implementations • 13 Sep 2021 • Anna Breger, Felix Goldbach, Bianca S. Gerendas, Ursula Schmidt-Erfurth, Martin Ehler
The results underline the visual evaluation.
no code implementations • 2 Aug 2019 • José Ignacio Orlando, Anna Breger, Hrvoje Bogunović, Sophie Riedl, Bianca S. Gerendas, Martin Ehler, Ursula Schmidt-Erfurth
Supervised deep learning models trained with standard loss functions are usually able to characterize only the most common disease appeareance from a training set, resulting in suboptimal performance and poor generalization when dealing with unseen lesions.
no code implementations • 24 Jan 2019 • Philipp Seeböck, David Romo-Bucheli, Sebastian Waldstein, Hrvoje Bogunović, José Ignacio Orlando, Bianca S. Gerendas, Georg Langs, Ursula Schmidt-Erfurth
Among the several sources of variability the ML models have to deal with, a major factor is the acquisition device, which can limit the ML model's generalizability.
no code implementations • 23 Jan 2019 • José Ignacio Orlando, Philipp Seeböck, Hrvoje Bogunović, Sophie Klimscha, Christoph Grechenig, Sebastian Waldstein, Bianca S. Gerendas, Ursula Schmidt-Erfurth
In this paper, we introduce a Bayesian deep learning based model for segmenting the photoreceptor layer in pathological OCT scans.
Ranked #4 on
Image Matting
on AIM-500
1 code implementation • 22 Jan 2019 • Anna Breger, Jose Ignacio Orlando, Pavol Harar, Monika Dörfler, Sophie Klimscha, Christoph Grechenig, Bianca S. Gerendas, Ursula Schmidt-Erfurth, Martin Ehler
In two supervised learning problems, clinical image segmentation and music information classification, the application of our proposed augmented target loss functions increase the accuracy.
no code implementations • 31 Oct 2018 • Philipp Seeböck, Sebastian M. Waldstein, Sophie Klimscha, Hrvoje Bogunovic, Thomas Schlegl, Bianca S. Gerendas, René Donner, Ursula Schmidt-Erfurth, Georg Langs
A multi-scale deep denoising autoencoder is trained on healthy images, and a one-class support vector machine identifies anomalies in new data.
no code implementations • 2 Dec 2016 • Philipp Seeböck, Sebastian Waldstein, Sophie Klimscha, Bianca S. Gerendas, René Donner, Thomas Schlegl, Ursula Schmidt-Erfurth, Georg Langs
The identification and quantification of markers in medical images is critical for diagnosis, prognosis and management of patients in clinical practice.