Search Results for author: Binyuan Hui

Found 49 papers, 29 papers with code

S^2SQL: Injecting Syntax to Question-Schema Interaction Graph Encoder for Text-to-SQL Parsers

no code implementations Findings (ACL) 2022 Binyuan Hui, Ruiying Geng, Lihan Wang, Bowen Qin, Yanyang Li, Bowen Li, Jian Sun, Yongbin Li

The task of converting a natural language question into an executable SQL query, known as text-to-SQL, is an important branch of semantic parsing.

Text-To-SQL

START: Self-taught Reasoner with Tools

no code implementations6 Mar 2025 Chengpeng Li, Mingfeng Xue, Zhenru Zhang, Jiaxi Yang, Beichen Zhang, Xiang Wang, Bowen Yu, Binyuan Hui, Junyang Lin, Dayiheng Liu

In this paper, we introduce START (Self-Taught Reasoner with Tools), a novel tool-integrated long CoT reasoning LLM that significantly enhances reasoning capabilities by leveraging external tools.

Math Self-Learning

Multi-Agent Collaboration for Multilingual Code Instruction Tuning

no code implementations11 Feb 2025 Jian Yang, Wei zhang, Jiaxi Yang, Yibo Miao, Shanghaoran Quan, Zhenhe Wu, Qiyao Peng, Liqun Yang, Tianyu Liu, Zeyu Cui, Binyuan Hui, Junyang Lin

Recent advancement in code understanding and generation demonstrates that code LLMs fine-tuned on a high-quality instruction dataset can gain powerful capabilities to address wide-ranging code-related tasks.

Cross-Lingual Transfer Transfer Learning

Large Language Models Meet Symbolic Provers for Logical Reasoning Evaluation

1 code implementation10 Feb 2025 Chengwen Qi, Ren Ma, Bowen Li, He Du, Binyuan Hui, Jinwang Wu, Yuanjun Laili, Conghui He

First-order logic (FOL) reasoning, which involves sequential deduction, is pivotal for intelligent systems and serves as a valuable task for evaluating reasoning capabilities, particularly in chain-of-thought (CoT) contexts.

Logical Reasoning

IW-Bench: Evaluating Large Multimodal Models for Converting Image-to-Web

no code implementations14 Sep 2024 Hongcheng Guo, Wei zhang, JunHao Chen, Yaonan Gu, Jian Yang, Junjia Du, Binyuan Hui, Tianyu Liu, Jianxin Ma, Chang Zhou, Zhoujun Li

We have conducted extensive experiments on existing large multimodal models, offering insights into their performance and areas for improvement in image-to-web domain.

Image Comprehension

Synthesizing Text-to-SQL Data from Weak and Strong LLMs

no code implementations6 Aug 2024 Jiaxi Yang, Binyuan Hui, Min Yang, Jian Yang, Junyang Lin, Chang Zhou

The capability gap between open-source and closed-source large language models (LLMs) remains a challenge in text-to-SQL tasks.

Domain Generalization Text-To-SQL

OpenHands: An Open Platform for AI Software Developers as Generalist Agents

2 code implementations23 Jul 2024 Xingyao Wang, Boxuan Li, Yufan Song, Frank F. Xu, Xiangru Tang, Mingchen Zhuge, Jiayi Pan, Yueqi Song, Bowen Li, Jaskirat Singh, Hoang H. Tran, Fuqiang Li, Ren Ma, Mingzhang Zheng, Bill Qian, Yanjun Shao, Niklas Muennighoff, Yizhe Zhang, Binyuan Hui, Junyang Lin, Robert Brennan, Hao Peng, Heng Ji, Graham Neubig

OpenDevin), a platform for the development of powerful and flexible AI agents that interact with the world in similar ways to those of a human developer: by writing code, interacting with a command line, and browsing the web.

BigCodeBench: Benchmarking Code Generation with Diverse Function Calls and Complex Instructions

2 code implementations22 Jun 2024 Terry Yue Zhuo, Minh Chien Vu, Jenny Chim, Han Hu, Wenhao Yu, Ratnadira Widyasari, Imam Nur Bani Yusuf, Haolan Zhan, Junda He, Indraneil Paul, Simon Brunner, Chen Gong, Thong Hoang, Armel Randy Zebaze, Xiaoheng Hong, Wen-Ding Li, Jean Kaddour, Ming Xu, Zhihan Zhang, Prateek Yadav, Naman jain, Alex Gu, Zhoujun Cheng, Jiawei Liu, Qian Liu, Zijian Wang, David Lo, Binyuan Hui, Niklas Muennighoff, Daniel Fried, Xiaoning Du, Harm de Vries, Leandro von Werra

Fulfilling both of these characteristics can pose a great challenge for LLMs. To assess how well LLMs can solve challenging and practical tasks via programs, we introduce BigCodeBench, a benchmark that challenges LLMs to invoke multiple function calls as tools from 139 libraries and 7 domains for 1, 140 fine-grained tasks.

Benchmarking Code Generation

DialCLIP: Empowering CLIP as Multi-Modal Dialog Retriever

no code implementations2 Jan 2024 Zhichao Yin, Binyuan Hui, Min Yang, Fei Huang, Yongbin Li

Recently, substantial advancements in pre-trained vision-language models have greatly enhanced the capabilities of multi-modal dialog systems.

Language Modelling Retrieval

One-Shot Learning as Instruction Data Prospector for Large Language Models

1 code implementation16 Dec 2023 Yunshui Li, Binyuan Hui, Xiaobo Xia, Jiaxi Yang, Min Yang, Lei Zhang, Shuzheng Si, Ling-Hao Chen, Junhao Liu, Tongliang Liu, Fei Huang, Yongbin Li

Contemporary practices in instruction tuning often hinge on enlarging data scaling without a clear strategy for ensuring data quality, inadvertently introducing noise that may compromise model performance.

One-Shot Learning

Lemur: Harmonizing Natural Language and Code for Language Agents

1 code implementation10 Oct 2023 Yiheng Xu, Hongjin Su, Chen Xing, Boyu Mi, Qian Liu, Weijia Shi, Binyuan Hui, Fan Zhou, Yitao Liu, Tianbao Xie, Zhoujun Cheng, Siheng Zhao, Lingpeng Kong, Bailin Wang, Caiming Xiong, Tao Yu

We introduce Lemur and Lemur-Chat, openly accessible language models optimized for both natural language and coding capabilities to serve as the backbone of versatile language agents.

An Investigation of LLMs' Inefficacy in Understanding Converse Relations

1 code implementation8 Oct 2023 Chengwen Qi, Bowen Li, Binyuan Hui, Bailin Wang, Jinyang Li, Jinwang Wu, Yuanjun Laili

Our ConvRE features two tasks, Re2Text and Text2Re, which are formulated as multi-choice question answering to evaluate LLMs' ability to determine the matching between relations and associated text.

Knowledge Graph Completion Question Answering +1

VDialogUE: A Unified Evaluation Benchmark for Visually-grounded Dialogue

no code implementations14 Sep 2023 Yunshui Li, Binyuan Hui, Zhaochao Yin, Wanwei He, Run Luo, Yuxing Long, Min Yang, Fei Huang, Yongbin Li

Visually-grounded dialog systems, which integrate multiple modes of communication such as text and visual inputs, have become an increasingly popular area of investigation.

Model Inversion Attack via Dynamic Memory Learning

no code implementations24 Aug 2023 Gege Qi, Yuefeng Chen, Xiaofeng Mao, Binyuan Hui, Xiaodan Li, Rong Zhang, Hui Xue

Model Inversion (MI) attacks aim to recover the private training data from the target model, which has raised security concerns about the deployment of DNNs in practice.

model

OctoPack: Instruction Tuning Code Large Language Models

3 code implementations14 Aug 2023 Niklas Muennighoff, Qian Liu, Armel Zebaze, Qinkai Zheng, Binyuan Hui, Terry Yue Zhuo, Swayam Singh, Xiangru Tang, Leandro von Werra, Shayne Longpre

We benchmark CommitPack against other natural and synthetic code instructions (xP3x, Self-Instruct, OASST) on the 16B parameter StarCoder model, and achieve state-of-the-art performance among models not trained on OpenAI outputs, on the HumanEval Python benchmark (46. 2% pass@1).

Code Generation Code Repair +1

A Preliminary Study of the Intrinsic Relationship between Complexity and Alignment

1 code implementation10 Aug 2023 Yingxiu Zhao, Bowen Yu, Binyuan Hui, Haiyang Yu, Fei Huang, Yongbin Li, Nevin L. Zhang

Training large language models (LLMs) with open-domain instruction data has yielded remarkable success in aligning to end tasks and human preferences.

Multimodal Recommendation Dialog with Subjective Preference: A New Challenge and Benchmark

1 code implementation26 May 2023 Yuxing Long, Binyuan Hui, Caixia Yuan1, Fei Huang, Yongbin Li, Xiaojie Wang

Existing multimodal task-oriented dialog data fails to demonstrate the diverse expressions of user subjective preferences and recommendation acts in the real-life shopping scenario.

Diversity Multimodal Recommendation

PaCE: Unified Multi-modal Dialogue Pre-training with Progressive and Compositional Experts

1 code implementation24 May 2023 Yunshui Li, Binyuan Hui, Zhichao Yin, Min Yang, Fei Huang, Yongbin Li

It utilizes a combination of several fundamental experts to accommodate multiple dialogue-related tasks and can be pre-trained using limited dialogue and extensive non-dialogue multi-modal data.

Dialogue State Tracking Image Retrieval +4

Iterative Forward Tuning Boosts In-Context Learning in Language Models

1 code implementation22 May 2023 Jiaxi Yang, Binyuan Hui, Min Yang, Bailin Wang, Bowen Li, Binhua Li, Fei Huang, Yongbin Li

Despite the advancements in in-context learning (ICL) for large language models (LLMs), current research centers on specific prompt engineering, such as demonstration selection, with the expectation that a single iteration of demonstrations processing can generalize effectively to a given test sample.

Decision Making In-Context Learning +2

Out-of-Domain Intent Detection Considering Multi-Turn Dialogue Contexts

no code implementations5 May 2023 Hao Lang, Yinhe Zheng, Binyuan Hui, Fei Huang, Yongbin Li

Out-of-Domain (OOD) intent detection is vital for practical dialogue systems, and it usually requires considering multi-turn dialogue contexts.

Intent Detection

Can LLM Already Serve as A Database Interface? A BIg Bench for Large-Scale Database Grounded Text-to-SQLs

no code implementations NeurIPS 2023 Jinyang Li, Binyuan Hui, Ge Qu, Jiaxi Yang, Binhua Li, Bowen Li, Bailin Wang, Bowen Qin, Rongyu Cao, Ruiying Geng, Nan Huo, Xuanhe Zhou, Chenhao Ma, Guoliang Li, Kevin C. C. Chang, Fei Huang, Reynold Cheng, Yongbin Li

Our emphasis on database values highlights the new challenges of dirty database contents, external knowledge between NL questions and database contents, and SQL efficiency, particularly in the context of massive databases.

SQL Parsing Text-To-SQL

Large Language Models are Versatile Decomposers: Decompose Evidence and Questions for Table-based Reasoning

2 code implementations31 Jan 2023 Yunhu Ye, Binyuan Hui, Min Yang, Binhua Li, Fei Huang, Yongbin Li

To alleviate the above challenges, we exploit large language models (LLMs) as decomposers for effective table-based reasoning, which (i) decompose huge evidence (a huge table) into sub-evidence (a small table) to mitigate the interference of useless information for table reasoning; and (ii) decompose complex questions into simpler sub-questions for text reasoning.

Hallucination Semantic Parsing +1

Graphix-T5: Mixing Pre-Trained Transformers with Graph-Aware Layers for Text-to-SQL Parsing

1 code implementation18 Jan 2023 Jinyang Li, Binyuan Hui, Reynold Cheng, Bowen Qin, Chenhao Ma, Nan Huo, Fei Huang, Wenyu Du, Luo Si, Yongbin Li

Recently, the pre-trained text-to-text transformer model, namely T5, though not specialized for text-to-SQL parsing, has achieved state-of-the-art performance on standard benchmarks targeting domain generalization.

Domain Generalization Inductive Bias +2

SPRING: Situated Conversation Agent Pretrained with Multimodal Questions from Incremental Layout Graph

1 code implementation5 Jan 2023 Yuxing Long, Binyuan Hui, Fulong Ye, Yanyang Li, Zhuoxin Han, Caixia Yuan, Yongbin Li, Xiaojie Wang

Existing multimodal conversation agents have shown impressive abilities to locate absolute positions or retrieve attributes in simple scenarios, but they fail to perform well when complex relative positions and information alignments are involved, which poses a bottleneck in response quality.

Question Answering

STAR: SQL Guided Pre-Training for Context-dependent Text-to-SQL Parsing

1 code implementation21 Oct 2022 ZeFeng Cai, Xiangyu Li, Binyuan Hui, Min Yang, Bowen Li, Binhua Li, Zheng Cao, Weijie Li, Fei Huang, Luo Si, Yongbin Li

Concretely, we propose two novel pre-training objectives which respectively explore the context-dependent interactions of NL utterances and SQL queries within each text-to-SQL conversation: (i) schema state tracking (SST) objective that tracks and explores the schema states of context-dependent SQL queries in the form of schema-states by predicting and updating the value of each schema slot during interaction; (ii) utterance dependency tracking (UDT) objective that employs weighted contrastive learning to pull together two semantically similar NL utterances and push away the representations of semantically dissimilar NL utterances within each conversation.

Contrastive Learning SQL Parsing +1

SUN: Exploring Intrinsic Uncertainties in Text-to-SQL Parsers

1 code implementation COLING 2022 Bowen Qin, Lihan Wang, Binyuan Hui, Bowen Li, Xiangpeng Wei, Binhua Li, Fei Huang, Luo Si, Min Yang, Yongbin Li

To improve the generalizability and stability of neural text-to-SQL parsers, we propose a model uncertainty constraint to refine the query representations by enforcing the output representations of different perturbed encoding networks to be consistent with each other.

SQL Parsing Text-To-SQL

A Survey on Text-to-SQL Parsing: Concepts, Methods, and Future Directions

no code implementations29 Aug 2022 Bowen Qin, Binyuan Hui, Lihan Wang, Min Yang, Jinyang Li, Binhua Li, Ruiying Geng, Rongyu Cao, Jian Sun, Luo Si, Fei Huang, Yongbin Li

In recent years, deep neural networks have significantly advanced this task by neural generation models, which automatically learn a mapping function from an input NL question to an output SQL query.

SQL Parsing Text-To-SQL

Proton: Probing Schema Linking Information from Pre-trained Language Models for Text-to-SQL Parsing

2 code implementations28 Jun 2022 Lihan Wang, Bowen Qin, Binyuan Hui, Bowen Li, Min Yang, Bailin Wang, Binhua Li, Fei Huang, Luo Si, Yongbin Li

The importance of building text-to-SQL parsers which can be applied to new databases has long been acknowledged, and a critical step to achieve this goal is schema linking, i. e., properly recognizing mentions of unseen columns or tables when generating SQLs.

SQL Parsing Text-To-SQL

S$^2$SQL: Injecting Syntax to Question-Schema Interaction Graph Encoder for Text-to-SQL Parsers

no code implementations14 Mar 2022 Binyuan Hui, Ruiying Geng, Lihan Wang, Bowen Qin, Bowen Li, Jian Sun, Yongbin Li

The task of converting a natural language question into an executable SQL query, known as text-to-SQL, is an important branch of semantic parsing.

Text-To-SQL

Linking-Enhanced Pre-Training for Table Semantic Parsing

no code implementations18 Nov 2021 Bowen Qin, Lihan Wang, Binyuan Hui, Ruiying Geng, Zheng Cao, Min Yang, Jian Sun, Yongbin Li

Recently pre-training models have significantly improved the performance of various NLP tasks by leveraging large-scale text corpora to improve the contextual representation ability of the neural network.

Inductive Bias Language Modeling +3

Improving Text-to-SQL with Schema Dependency Learning

no code implementations7 Mar 2021 Binyuan Hui, Xiang Shi, Ruiying Geng, Binhua Li, Yongbin Li, Jian Sun, Xiaodan Zhu

In this paper, we present the Schema Dependency guided multi-task Text-to-SQL model (SDSQL) to guide the network to effectively capture the interactions between questions and schemas.

Text-To-SQL

Multi-view Deep Subspace Clustering Networks

2 code implementations6 Aug 2019 Pengfei Zhu, Xinjie Yao, Yu Wang, Binyuan Hui, Dawei Du, QinGhua Hu

Dnet learns view-specific self-representation matrices, whereas Unet learns a common self-representation matrix for all views.

Clustering Diversity +2

Cannot find the paper you are looking for? You can Submit a new open access paper.