no code implementations • 8 Jun 2020 • Bora Baydar, Savas Ozkan, A. Emre Kavur, N. Sinem Gezer, M. Alper Selver, Gozde Bozdagi Akar
Despite the widespread use of deep learning methods for semantic segmentation of images that are acquired from a single source, clinicians often use multi-domain data for a detailed analysis.
1 code implementation • 17 Jan 2020 • A. Emre Kavur, N. Sinem Gezer, Mustafa Barış, Sinem Aslan, Pierre-Henri Conze, Vladimir Groza, Duc Duy Pham, Soumick Chatterjee, Philipp Ernst, Savaş Özkan, Bora Baydar, Dmitry Lachinov, Shuo Han, Josef Pauli, Fabian Isensee, Matthias Perkonigg, Rachana Sathish, Ronnie Rajan, Debdoot Sheet, Gurbandurdy Dovletov, Oliver Speck, Andreas Nürnberger, Klaus H. Maier-Hein, Gözde BOZDAĞI AKAR, Gözde Ünal, Oğuz Dicle, M. Alper Selver
The analysis shows that the performance of DL models for single modality (CT / MR) can show reliable volumetric analysis performance (DICE: 0. 98 $\pm$ 0. 00 / 0. 95 $\pm$ 0. 01) but the best MSSD performance remain limited (21. 89 $\pm$ 13. 94 / 20. 85 $\pm$ 10. 63 mm).
no code implementations • 28 Nov 2018 • Bora Baydar, Savas Ozkan, Gozde Bozdagi Akar
Automatic segmentation of medical images is among most demanded works in the medical information field since it saves time of the experts in the field and avoids human error factors.