no code implementations • 27 Jun 2024 • Faruk Ahmed, Andrew Sellergren, Lin Yang, Shawn Xu, Boris Babenko, Abbi Ward, Niels Olson, Arash Mohtashamian, Yossi Matias, Greg S. Corrado, Quang Duong, Dale R. Webster, Shravya Shetty, Daniel Golden, Yun Liu, David F. Steiner, Ellery Wulczyn
This enables applications utilizing a shared image-text embedding space, such as text or image retrieval for finding cases of interest, as well as integration of the WSI encoder with a frozen large language model (LLM) for WSI-based generative text capabilities such as report generation or AI-in-the-loop interactions.
no code implementations • 29 May 2024 • Chloe R. Bennett, Heather Cole-Lewis, Stephanie Farquhar, Naama Haamel, Boris Babenko, Oran Lang, Mat Fleck, Ilana Traynis, Charles Lau, Ivor Horn, Courtney Lyles
Interdisciplinary panel discussions can help reduce bias, identify potential confounders, and identify opportunities for additional research where there are gaps in the literature.
no code implementations • 1 Jun 2023 • Oran Lang, Doron Yaya-Stupp, Ilana Traynis, Heather Cole-Lewis, Chloe R. Bennett, Courtney Lyles, Charles Lau, Michal Irani, Christopher Semturs, Dale R. Webster, Greg S. Corrado, Avinatan Hassidim, Yossi Matias, Yun Liu, Naama Hammel, Boris Babenko
In this paper, we present a method for automatic visual explanations leveraging team-based expertise by generating hypotheses of what visual signals in the images are correlated with the task.
no code implementations • 19 Jul 2022 • Boris Babenko, Ilana Traynis, Christina Chen, Preeti Singh, Akib Uddin, Jorge Cuadros, Lauren P. Daskivich, April Y. Maa, Ramasamy Kim, Eugene Yu-Chuan Kang, Yossi Matias, Greg S. Corrado, Lily Peng, Dale R. Webster, Christopher Semturs, Jonathan Krause, Avinash V. Varadarajan, Naama Hammel, Yun Liu
On validation sets B and C, with substantial patient population differences compared to the development sets, the DLS outperformed the baseline for ACR>=300 and Hgb<11 by 7. 3-13. 2%.
3 code implementations • 19 May 2022 • Shekoofeh Azizi, Laura Culp, Jan Freyberg, Basil Mustafa, Sebastien Baur, Simon Kornblith, Ting Chen, Patricia MacWilliams, S. Sara Mahdavi, Ellery Wulczyn, Boris Babenko, Megan Wilson, Aaron Loh, Po-Hsuan Cameron Chen, YuAn Liu, Pinal Bavishi, Scott Mayer McKinney, Jim Winkens, Abhijit Guha Roy, Zach Beaver, Fiona Ryan, Justin Krogue, Mozziyar Etemadi, Umesh Telang, Yun Liu, Lily Peng, Greg S. Corrado, Dale R. Webster, David Fleet, Geoffrey Hinton, Neil Houlsby, Alan Karthikesalingam, Mohammad Norouzi, Vivek Natarajan
These results suggest that REMEDIS can significantly accelerate the life-cycle of medical imaging AI development thereby presenting an important step forward for medical imaging AI to deliver broad impact.
no code implementations • 23 Nov 2020 • Boris Babenko, Akinori Mitani, Ilana Traynis, Naho Kitade, Preeti Singh, April Maa, Jorge Cuadros, Greg S. Corrado, Lily Peng, Dale R. Webster, Avinash Varadarajan, Naama Hammel, Yun Liu
In validation set A (n=27, 415 patients, all undilated), the DLS detected poor blood glucose control (HbA1c > 9%) with an area under receiver operating characteristic curve (AUC) of 70. 2; moderate-or-worse DR with an AUC of 75. 3; diabetic macular edema with an AUC of 78. 0; and vision-threatening DR with an AUC of 79. 4.
no code implementations • 10 Aug 2020 • Ashish Bora, Siva Balasubramanian, Boris Babenko, Sunny Virmani, Subhashini Venugopalan, Akinori Mitani, Guilherme de Oliveira Marinho, Jorge Cuadros, Paisan Ruamviboonsuk, Greg S. Corrado, Lily Peng, Dale R. Webster, Avinash V. Varadarajan, Naama Hammel, Yun Liu, Pinal Bavishi
We created and validated two versions of a deep learning system (DLS) to predict the development of mild-or-worse ("Mild+") DR in diabetic patients undergoing DR screening.
no code implementations • 10 Apr 2019 • Boris Babenko, Siva Balasubramanian, Katy E. Blumer, Greg S. Corrado, Lily Peng, Dale R. Webster, Naama Hammel, Avinash V. Varadarajan
For predicting progression specifically from iAMD, the DL algorithm's sensitivity (57+/-6%) was also higher compared to the 9-step grades (36+/-8%) and the 4-category grades (20+/-0%).
no code implementations • 16 Nov 2017 • Boris Babenko, Jonathan Hersh, David Newhouse, Anusha Ramakrishnan, Tom Swartz
We find that 1) the best models, which incorporate satellite-estimated land use as a predictor, explain approximately 57% of the variation in poverty in a validation sample of 10 percent of MCS-ENIGH municipalities; 2) Across all MCS-ENIGH municipalities explanatory power reduces to 44% in a CNN prediction and landcover model; 3) Predicted poverty from the CNN predictions alone explains 47% of the variation in poverty in the validation sample, and 37% over all MCS-ENIGH municipalities; 4) In urban areas we see slight improvements from using Digital Globe versus Planet imagery, which explain 61% and 54% of poverty variation respectively.