no code implementations • 29 Nov 2024 • Petar Veličković, Alex Vitvitskyi, Larisa Markeeva, Borja Ibarz, Lars Buesing, Matej Balog, Alexander Novikov
Recent years have seen a significant surge in complex AI systems for competitive programming, capable of performing at admirable levels against human competitors.
no code implementations • 13 Jun 2024 • Wilfried Bounsi, Borja Ibarz, Andrew Dudzik, Jessica B. Hamrick, Larisa Markeeva, Alex Vitvitskyi, Razvan Pascanu, Petar Veličković
Transformers have revolutionized machine learning with their simple yet effective architecture.
2 code implementations • 6 Jun 2024 • Larisa Markeeva, Sean McLeish, Borja Ibarz, Wilfried Bounsi, Olga Kozlova, Alex Vitvitskyi, Charles Blundell, Tom Goldstein, Avi Schwarzschild, Petar Veličković
Three years ago, a similar issue was identified and rectified in the field of neural algorithmic reasoning, with the advent of the CLRS benchmark.
1 code implementation • 22 May 2023 • Peter Wirnsberger, Borja Ibarz, George Papamakarios
We present a machine-learning model based on normalizing flows that is trained to sample from the isobaric-isothermal ensemble.
no code implementations • 20 Feb 2023 • Beatrice Bevilacqua, Kyriacos Nikiforou, Borja Ibarz, Ioana Bica, Michela Paganini, Charles Blundell, Jovana Mitrovic, Petar Veličković
We evaluate our method on the CLRS algorithmic reasoning benchmark, where we show up to 3$\times$ improvements on the OOD test data.
2 code implementations • 22 Sep 2022 • Borja Ibarz, Vitaly Kurin, George Papamakarios, Kyriacos Nikiforou, Mehdi Bennani, Róbert Csordás, Andrew Dudzik, Matko Bošnjak, Alex Vitvitskyi, Yulia Rubanova, Andreea Deac, Beatrice Bevilacqua, Yaroslav Ganin, Charles Blundell, Petar Veličković
The cornerstone of neural algorithmic reasoning is the ability to solve algorithmic tasks, especially in a way that generalises out of distribution.
1 code implementation • 16 Nov 2021 • Peter Wirnsberger, George Papamakarios, Borja Ibarz, Sébastien Racanière, Andrew J. Ballard, Alexander Pritzel, Charles Blundell
We present a machine-learning approach, based on normalizing flows, for modelling atomic solids.
2 code implementations • NeurIPS 2018 • Borja Ibarz, Jan Leike, Tobias Pohlen, Geoffrey Irving, Shane Legg, Dario Amodei
To solve complex real-world problems with reinforcement learning, we cannot rely on manually specified reward functions.