no code implementations • 7 Mar 2025 • Pierandrea Cancian, Simone Saitta, Xiaojin Gu, Rudolf L. M. van Herten, Thijs J. Luttikholt, Jos Thannhauser, Rick H. J. A. Volleberg, Ruben G. A. van der Waerden, Joske L. van der Zande, Clarisa I. Sánchez, Bram van Ginneken, Niels van Royen, Ivana Išgum
To enable automatic detection of the attenuation artifacts caused by blood residues and gas bubbles based on their severity, we propose a convolutional neural network that performs classification of the attenuation lines (A-lines) into three classes: no artifact, mild artifact and severe artifact.
1 code implementation • 14 Feb 2025 • Yin-Chih Chelsea Wang, Tsao-Lun Chen, Shankeeth Vinayahalingam, Tai-Hsien Wu, Chu Wei Chang, Hsuan Hao Chang, Hung-Jen Wei, Mu-Hsiung Chen, Ching-Chang Ko, David Anssari Moin, Bram van Ginneken, Tong Xi, Hsiao-Cheng Tsai, Min-Huey Chen, Tzu-Ming Harry Hsu, Hye Chou
The AI system demonstrated comparable or superior performance to human readers, particularly +67. 9% (95% CI: 54. 0%-81. 9%; p < . 001) sensitivity for identifying periapical radiolucencies and +4. 7% (95% CI: 1. 4%-8. 0%; p = . 008) sensitivity for identifying missing teeth.
no code implementations • 18 Jan 2025 • Amelia Jiménez-Sánchez, Natalia-Rozalia Avlona, Sarah de Boer, Víctor M. Campello, Aasa Feragen, Enzo Ferrante, Melanie Ganz, Judy Wawira Gichoya, Camila González, Steff Groefsema, Alessa Hering, Adam Hulman, Leo Joskowicz, Dovile Juodelyte, Melih Kandemir, Thijs Kooi, Jorge del Pozo Lérida, Livie Yumeng Li, Andre Pacheco, Tim Rädsch, Mauricio Reyes, Théo Sourget, Bram van Ginneken, David Wen, Nina Weng, Jack Junchi Xu, Hubert Dariusz Zając, Maria A. Zuluaga, Veronika Cheplygina
To address this gap, we propose a living review that continuously tracks public datasets and their associated research artifacts across multiple medical imaging applications.
1 code implementation • 10 May 2024 • Hartmut Häntze, Lina Xu, Christian J. Mertens, Felix J. Dorfner, Leonhard Donle, Felix Busch, Avan Kader, Sebastian Ziegelmayer, Nadine Bayerl, Nassir Navab, Daniel Rueckert, Julia Schnabel, Hugo JWL Aerts, Daniel Truhn, Fabian Bamberg, Jakob Weiß, Christopher L. Schlett, Steffen Ringhof, Thoralf Niendorf, Tobias Pischon, Hans-Ulrich Kauczor, Tobias Nonnenmacher, Thomas Kröncke, Henry Völzke, Jeanette Schulz-Menger, Klaus Maier-Hein, Mathias Prokop, Bram van Ginneken, Alessa Hering, Marcus R. Makowski, Lisa C. Adams, Keno K. Bressem
A human-in-the-loop annotation workflow was employed, leveraging cross-modality transfer learning from an existing CT segmentation model to segment 40 anatomical structures.
no code implementations • 4 Jan 2024 • Ecem Sogancioglu, Bram van Ginneken, Finn Behrendt, Marcel Bengs, Alexander Schlaefer, Miron Radu, Di Xu, Ke Sheng, Fabien Scalzo, Eric Marcus, Samuele Papa, Jonas Teuwen, Ernst Th. Scholten, Steven Schalekamp, Nils Hendrix, Colin Jacobs, Ward Hendrix, Clara I Sánchez, Keelin Murphy
To address this, we organized a public research challenge, NODE21, aimed at the detection and generation of lung nodules in chest X-rays.
1 code implementation • 8 Nov 2023 • Gabriel Efrain Humpire-Mamani, Colin Jacobs, Mathias Prokop, Bram van Ginneken, Nikolas Lessmann
A base segmentation model (3D U-Net) was trained on a large and sparsely annotated dataset; its weights were used for transfer learning on four new down-stream segmentation tasks for which a fully annotated dataset was available.
no code implementations • 6 Sep 2023 • Gabriel Efrain Humpire Mamani, Nikolas Lessmann, Ernst Th. Scholten, Mathias Prokop, Colin Jacobs, Bram van Ginneken
Our end-to-end segmentation method was trained on 215 contrast-enhanced thoracic-abdominal CT scans, with half of these scans containing one or more abnormalities.
1 code implementation • 5 Sep 2023 • Weiyi Xie, Colin Jacobs, Jean-Paul Charbonnier, Dirk Jan Slebos, Bram van Ginneken
Manual analysis of emphysema subtypes and severity is laborious and subjective.
1 code implementation • 21 Jun 2023 • Jasper W. van der Graaf, Miranda L. van Hooff, Constantinus F. M. Buckens, Matthieu Rutten, Job L. C. van Susante, Robert Jan Kroeze, Marinus de Kleuver, Bram van Ginneken, Nikolas Lessmann
This paper presents a large publicly available multi-center lumbar spine magnetic resonance imaging (MRI) dataset with reference segmentations of vertebrae, intervertebral discs (IVDs), and spinal canal.
1 code implementation • 18 Jun 2023 • Luuk H. Boulogne, Julian Lorenz, Daniel Kienzle, Robin Schon, Katja Ludwig, Rainer Lienhart, Simon Jegou, Guang Li, Cong Chen, Qi Wang, Derik Shi, Mayug Maniparambil, Dominik Muller, Silvan Mertes, Niklas Schroter, Fabio Hellmann, Miriam Elia, Ine Dirks, Matias Nicolas Bossa, Abel Diaz Berenguer, Tanmoy Mukherjee, Jef Vandemeulebroucke, Hichem Sahli, Nikos Deligiannis, Panagiotis Gonidakis, Ngoc Dung Huynh, Imran Razzak, Reda Bouadjenek, Mario Verdicchio, Pasquale Borrelli, Marco Aiello, James A. Meakin, Alexander Lemm, Christoph Russ, Razvan Ionasec, Nikos Paragios, Bram van Ginneken, Marie-Pierre Revel Dubois
STOIC2021 consisted of a Qualification phase, where participants developed challenge solutions using 2000 publicly available CT scans, and a Final phase, where participants submitted their training methodologies with which solutions were trained on CT scans of 9724 subjects.
no code implementations • 6 Feb 2023 • Coen de Vente, Bram van Ginneken, Carel B. Hoyng, Caroline C. W. Klaver, Clara I. Sánchez
Deep learning classification models for medical image analysis often perform well on data from scanners that were used during training.
no code implementations • 3 Feb 2023 • Annika Reinke, Minu D. Tizabi, Michael Baumgartner, Matthias Eisenmann, Doreen Heckmann-Nötzel, A. Emre Kavur, Tim Rädsch, Carole H. Sudre, Laura Acion, Michela Antonelli, Tal Arbel, Spyridon Bakas, Arriel Benis, Matthew Blaschko, Florian Buettner, M. Jorge Cardoso, Veronika Cheplygina, Jianxu Chen, Evangelia Christodoulou, Beth A. Cimini, Gary S. Collins, Keyvan Farahani, Luciana Ferrer, Adrian Galdran, Bram van Ginneken, Ben Glocker, Patrick Godau, Robert Haase, Daniel A. Hashimoto, Michael M. Hoffman, Merel Huisman, Fabian Isensee, Pierre Jannin, Charles E. Kahn, Dagmar Kainmueller, Bernhard Kainz, Alexandros Karargyris, Alan Karthikesalingam, Hannes Kenngott, Jens Kleesiek, Florian Kofler, Thijs Kooi, Annette Kopp-Schneider, Michal Kozubek, Anna Kreshuk, Tahsin Kurc, Bennett A. Landman, Geert Litjens, Amin Madani, Klaus Maier-Hein, Anne L. Martel, Peter Mattson, Erik Meijering, Bjoern Menze, Karel G. M. Moons, Henning Müller, Brennan Nichyporuk, Felix Nickel, Jens Petersen, Susanne M. Rafelski, Nasir Rajpoot, Mauricio Reyes, Michael A. Riegler, Nicola Rieke, Julio Saez-Rodriguez, Clara I. Sánchez, Shravya Shetty, Maarten van Smeden, Ronald M. Summers, Abdel A. Taha, Aleksei Tiulpin, Sotirios A. Tsaftaris, Ben van Calster, Gaël Varoquaux, Manuel Wiesenfarth, Ziv R. Yaniv, Paul F. Jäger, Lena Maier-Hein
Validation metrics are key for the reliable tracking of scientific progress and for bridging the current chasm between artificial intelligence (AI) research and its translation into practice.
1 code implementation • 3 Feb 2023 • Coen de Vente, Koenraad A. Vermeer, Nicolas Jaccard, He Wang, Hongyi Sun, Firas Khader, Daniel Truhn, Temirgali Aimyshev, Yerkebulan Zhanibekuly, Tien-Dung Le, Adrian Galdran, Miguel Ángel González Ballester, Gustavo Carneiro, Devika R G, Hrishikesh P S, Densen Puthussery, Hong Liu, Zekang Yang, Satoshi Kondo, Satoshi Kasai, Edward Wang, Ashritha Durvasula, Jónathan Heras, Miguel Ángel Zapata, Teresa Araújo, Guilherme Aresta, Hrvoje Bogunović, Mustafa Arikan, Yeong Chan Lee, Hyun Bin Cho, Yoon Ho Choi, Abdul Qayyum, Imran Razzak, Bram van Ginneken, Hans G. Lemij, Clara I. Sánchez
Artificial intelligence (AI) can be used to analyze color fundus photographs (CFPs) in a cost-effective manner, making glaucoma screening more accessible.
no code implementations • 13 Jul 2022 • Péter Bándi, Maschenka Balkenhol, Marcory van Dijk, Bram van Ginneken, Jeroen van der Laak, Geert Litjens
Furthermore, we show the effectiveness of repeated adaptation of networks from one cancer type to another to obtain multi-task metastasis detection networks.
1 code implementation • 3 Jun 2022 • Lena Maier-Hein, Annika Reinke, Patrick Godau, Minu D. Tizabi, Florian Buettner, Evangelia Christodoulou, Ben Glocker, Fabian Isensee, Jens Kleesiek, Michal Kozubek, Mauricio Reyes, Michael A. Riegler, Manuel Wiesenfarth, A. Emre Kavur, Carole H. Sudre, Michael Baumgartner, Matthias Eisenmann, Doreen Heckmann-Nötzel, Tim Rädsch, Laura Acion, Michela Antonelli, Tal Arbel, Spyridon Bakas, Arriel Benis, Matthew Blaschko, M. Jorge Cardoso, Veronika Cheplygina, Beth A. Cimini, Gary S. Collins, Keyvan Farahani, Luciana Ferrer, Adrian Galdran, Bram van Ginneken, Robert Haase, Daniel A. Hashimoto, Michael M. Hoffman, Merel Huisman, Pierre Jannin, Charles E. Kahn, Dagmar Kainmueller, Bernhard Kainz, Alexandros Karargyris, Alan Karthikesalingam, Hannes Kenngott, Florian Kofler, Annette Kopp-Schneider, Anna Kreshuk, Tahsin Kurc, Bennett A. Landman, Geert Litjens, Amin Madani, Klaus Maier-Hein, Anne L. Martel, Peter Mattson, Erik Meijering, Bjoern Menze, Karel G. M. Moons, Henning Müller, Brennan Nichyporuk, Felix Nickel, Jens Petersen, Nasir Rajpoot, Nicola Rieke, Julio Saez-Rodriguez, Clara I. Sánchez, Shravya Shetty, Maarten van Smeden, Ronald M. Summers, Abdel A. Taha, Aleksei Tiulpin, Sotirios A. Tsaftaris, Ben van Calster, Gaël Varoquaux, Paul F. Jäger
The framework was developed in a multi-stage Delphi process and is based on the novel concept of a problem fingerprint - a structured representation of the given problem that captures all aspects that are relevant for metric selection, from the domain interest to the properties of the target structure(s), data set and algorithm output.
1 code implementation • 12 Jan 2022 • Weiyi Xie, Colin Jacobs, Jean-Paul Charbonnier, Bram van Ginneken
The proposed method formulates airway labeling as a branch classification problem in the airway tree graph, where branch features are extracted using convolutional neural networks (CNN) and enriched using graph neural networks.
no code implementations • 8 Dec 2021 • Alessa Hering, Lasse Hansen, Tony C. W. Mok, Albert C. S. Chung, Hanna Siebert, Stephanie Häger, Annkristin Lange, Sven Kuckertz, Stefan Heldmann, Wei Shao, Sulaiman Vesal, Mirabela Rusu, Geoffrey Sonn, Théo Estienne, Maria Vakalopoulou, Luyi Han, Yunzhi Huang, Pew-Thian Yap, Mikael Brudfors, Yaël Balbastre, Samuel Joutard, Marc Modat, Gal Lifshitz, Dan Raviv, Jinxin Lv, Qiang Li, Vincent Jaouen, Dimitris Visvikis, Constance Fourcade, Mathieu Rubeaux, Wentao Pan, Zhe Xu, Bailiang Jian, Francesca De Benetti, Marek Wodzinski, Niklas Gunnarsson, Jens Sjölund, Daniel Grzech, Huaqi Qiu, Zeju Li, Alexander Thorley, Jinming Duan, Christoph Großbröhmer, Andrew Hoopes, Ingerid Reinertsen, Yiming Xiao, Bennett Landman, Yuankai Huo, Keelin Murphy, Nikolas Lessmann, Bram van Ginneken, Adrian V. Dalca, Mattias P. Heinrich
Image registration is a fundamental medical image analysis task, and a wide variety of approaches have been proposed.
no code implementations • 30 Sep 2021 • Grzegorz Chlebus, Andrea Schenk, Horst K. Hahn, Bram van Ginneken, Hans Meine
In this work, we propose an uncertainty slice sampling (USS) strategy for semantic segmentation of 3D medical volumes that selects 2D image slices for annotation and compare it with various other strategies.
1 code implementation • 10 Jun 2021 • Michela Antonelli, Annika Reinke, Spyridon Bakas, Keyvan Farahani, AnnetteKopp-Schneider, Bennett A. Landman, Geert Litjens, Bjoern Menze, Olaf Ronneberger, Ronald M. Summers, Bram van Ginneken, Michel Bilello, Patrick Bilic, Patrick F. Christ, Richard K. G. Do, Marc J. Gollub, Stephan H. Heckers, William R. Jarnagin, Maureen K. McHugo, Sandy Napel, Jennifer S. Goli Pernicka, Kawal Rhode, Catalina Tobon-Gomez, Eugene Vorontsov, Henkjan Huisman, James A. Meakin, Sebastien Ourselin, Manuel Wiesenfarth, Pablo Arbelaez, Byeonguk Bae, Sihong Chen, Laura Daza, Jianjiang Feng, Baochun He, Fabian Isensee, Yuanfeng Ji, Fucang Jia, Namkug Kim, Ildoo Kim, Dorit Merhof, Akshay Pai, Beomhee Park, Mathias Perslev, Ramin Rezaiifar, Oliver Rippel, Ignacio Sarasua, Wei Shen, Jaemin Son, Christian Wachinger, Liansheng Wang, Yan Wang, Yingda Xia, Daguang Xu, Zhanwei Xu, Yefeng Zheng, Amber L. Simpson, Lena Maier-Hein, M. Jorge Cardoso
Segmentation is so far the most widely investigated medical image processing task, but the various segmentation challenges have typically been organized in isolation, such that algorithm development was driven by the need to tackle a single specific clinical problem.
no code implementations • 1 Jun 2021 • Weiyi Xie, Colin Jacobs, Bram van Ginneken
We propose a deep learning clustering method that exploits dense features from a segmentation network for emphysema subtyping from computed tomography (CT) scans.
no code implementations • 25 May 2021 • Weiyi Xie, Colin Jacobs, Jean-Paul Charbonnier, Bram van Ginneken
Therefore, we propose a weakly-supervised segmentation method based on dense regression activation maps (dRAMs).
no code implementations • 3 May 2021 • Ecem Sogancioglu, Keelin Murphy, Ernst Th. Scholten, Luuk H. Boulogne, Mathias Prokop, Bram van Ginneken
The optimal models were tested on 291 CXR studies with reference lung volume obtained from PFT.
1 code implementation • 12 Apr 2021 • Annika Reinke, Minu D. Tizabi, Carole H. Sudre, Matthias Eisenmann, Tim Rädsch, Michael Baumgartner, Laura Acion, Michela Antonelli, Tal Arbel, Spyridon Bakas, Peter Bankhead, Arriel Benis, Matthew Blaschko, Florian Buettner, M. Jorge Cardoso, Jianxu Chen, Veronika Cheplygina, Evangelia Christodoulou, Beth Cimini, Gary S. Collins, Sandy Engelhardt, Keyvan Farahani, Luciana Ferrer, Adrian Galdran, Bram van Ginneken, Ben Glocker, Patrick Godau, Robert Haase, Fred Hamprecht, Daniel A. Hashimoto, Doreen Heckmann-Nötzel, Peter Hirsch, Michael M. Hoffman, Merel Huisman, Fabian Isensee, Pierre Jannin, Charles E. Kahn, Dagmar Kainmueller, Bernhard Kainz, Alexandros Karargyris, Alan Karthikesalingam, A. Emre Kavur, Hannes Kenngott, Jens Kleesiek, Andreas Kleppe, Sven Kohler, Florian Kofler, Annette Kopp-Schneider, Thijs Kooi, Michal Kozubek, Anna Kreshuk, Tahsin Kurc, Bennett A. Landman, Geert Litjens, Amin Madani, Klaus Maier-Hein, Anne L. Martel, Peter Mattson, Erik Meijering, Bjoern Menze, David Moher, Karel G. M. Moons, Henning Müller, Brennan Nichyporuk, Felix Nickel, M. Alican Noyan, Jens Petersen, Gorkem Polat, Susanne M. Rafelski, Nasir Rajpoot, Mauricio Reyes, Nicola Rieke, Michael Riegler, Hassan Rivaz, Julio Saez-Rodriguez, Clara I. Sánchez, Julien Schroeter, Anindo Saha, M. Alper Selver, Lalith Sharan, Shravya Shetty, Maarten van Smeden, Bram Stieltjes, Ronald M. Summers, Abdel A. Taha, Aleksei Tiulpin, Sotirios A. Tsaftaris, Ben van Calster, Gaël Varoquaux, Manuel Wiesenfarth, Ziv R. Yaniv, Paul Jäger, Lena Maier-Hein
While the importance of automatic image analysis is continuously increasing, recent meta-research revealed major flaws with respect to algorithm validation.
no code implementations • 25 Mar 2021 • Erdi Çallı, Keelin Murphy, Steef Kurstjens, Tijs Samson, Robert Herpers, Henk Smits, Matthieu Rutten, Bram van Ginneken
The data includes results from 27 laboratory tests and a chest x-ray scored by a deep learning model.
no code implementations • 15 Mar 2021 • Ecem Sogancioglu, Erdi Çallı, Bram van Ginneken, Kicky G. van Leeuwen, Keelin Murphy
Recent advances in deep learning have led to a promising performance in many medical image analysis tasks.
no code implementations • 16 Jan 2021 • Khrystyna Faryna, Kevin Koschmieder, Marcella M. Paul, Thomas van den Heuvel, Anke van der Eerden, Rashindra Manniesing, Bram van Ginneken
We utilize synthetic images generated with our method for data augmentation in cerebral microbleeds detection.
no code implementations • 29 Nov 2020 • Alessa Hering, Stephanie Häger, Jan Moltz, Nikolas Lessmann, Stefan Heldmann, Bram van Ginneken
Deep-learning-based registration methods emerged as a fast alternative to conventional registration methods.
1 code implementation • 23 Sep 2020 • Anneke Meyer, Grzegorz Chlebus, Marko Rak, Daniel Schindele, Martin Schostak, Bram van Ginneken, Andrea Schenk, Hans Meine, Horst K. Hahn, Andreas Schreiber, Christian Hansen
Background and Objective: Accurate and reliable segmentation of the prostate gland in MR images can support the clinical assessment of prostate cancer, as well as the planning and monitoring of focal and loco-regional therapeutic interventions.
no code implementations • 21 Sep 2020 • Coen de Vente, Luuk H. Boulogne, Kiran Vaidhya Venkadesh, Cheryl Sital, Nikolas Lessmann, Colin Jacobs, Clara I. Sánchez, Bram van Ginneken
This paper identifies a variety of components that increase the performance of CNN-based algorithms for COVID-19 grading from CT images.
no code implementations • 2 Aug 2020 • S. Kevin Zhou, Hayit Greenspan, Christos Davatzikos, James S. Duncan, Bram van Ginneken, Anant Madabhushi, Jerry L. Prince, Daniel Rueckert, Ronald M. Summers
In this survey paper, we first present traits of medical imaging, highlight both clinical needs and technical challenges in medical imaging, and describe how emerging trends in deep learning are addressing these issues.
1 code implementation • 11 Jun 2020 • Gerda Bortsova, Cristina González-Gonzalo, Suzanne C. Wetstein, Florian Dubost, Ioannis Katramados, Laurens Hogeweg, Bart Liefers, Bram van Ginneken, Josien P. W. Pluim, Mitko Veta, Clara I. Sánchez, Marleen de Bruijne
Firstly, we study the effect of weight initialization (ImageNet vs. random) on the transferability of adversarial attacks from the surrogate model to the target model.
no code implementations • 16 Apr 2020 • Weiyi Xie, Colin Jacobs, Jean-Paul Charbonnier, Bram van Ginneken
We argue that such structural relationships play a critical role in the accurate delineation of pulmonary lobes when the lungs are affected by diseases such as COVID-19 or COPD.
1 code implementation • MIDL 2019 • Nikolas Lessmann, Bram van Ginneken
Random transformations are commonly used for augmentation of the training data with the goal of reducing the uniformity of the training samples.
3 code implementations • 11 Nov 2019 • Hans Pinckaers, Bram van Ginneken, Geert Litjens
This method exploits the locality of most operations in modern convolutional neural networks by performing the forward and backward pass on smaller tiles of the image.
no code implementations • 16 Oct 2019 • Cristina González-Gonzalo, Bart Liefers, Bram van Ginneken, Clara I. Sánchez
We show that the augmented visual evidence of the predictions highlights the biomarkers considered by experts for diagnosis and improves the final localization performance.
no code implementations • 9 Oct 2019 • Lena Maier-Hein, Annika Reinke, Michal Kozubek, Anne L. Martel, Tal Arbel, Matthias Eisenmann, Allan Hanbuary, Pierre Jannin, Henning Müller, Sinan Onogur, Julio Saez-Rodriguez, Bram van Ginneken, Annette Kopp-Schneider, Bennett Landman
The number of biomedical image analysis challenges organized per year is steadily increasing.
no code implementations • 26 Sep 2019 • Max Argus, Cornelia Schaefer-Prokop, David A. Lynch, Bram van Ginneken
Chronic Obstructive Pulmonary Disease (COPD) is a leading cause of morbidity and mortality.
no code implementations • 22 Sep 2019 • Alessa Hering, Bram van Ginneken, Stefan Heldmann
We show that the use of a deep learning multilevel approach leads to significantly better registration results.
no code implementations • 15 Aug 2019 • Bart Liefers, Johanna M. Colijn, Cristina González-Gonzalo, Timo Verzijden, Paul Mitchell, Carel B. Hoyng, Bram van Ginneken, Caroline C. W. Klaver, Clara I. Sánchez
Participants: 409 CFIs of 238 eyes with GA from the Rotterdam Study (RS) and the Blue Mountain Eye Study (BMES) for model development, and 5, 379 CFIs of 625 eyes from the Age-Related Eye Disease Study (AREDS) for analysis of GA growth rate.
no code implementations • 18 Jul 2019 • Wouter Bulten, Hans Pinckaers, Hester van Boven, Robert Vink, Thomas de Bel, Bram van Ginneken, Jeroen van der Laak, Christina Hulsbergen-van de Kaa, Geert Litjens
We developed a fully automated deep learning system to grade prostate biopsies.
no code implementations • 2 Jul 2019 • Erdi Çallı, Keelin Murphy, Ecem Sogancioglu, Bram van Ginneken
The method is tested using a held-out test dataset of 21, 176 chest x-rays (in-distribution) and a set of 14, 821 out-of-distribution x-ray images of incorrect orientation or anatomy.
no code implementations • 22 Mar 2019 • Cristina González-Gonzalo, Verónica Sánchez-Gutiérrez, Paula Hernández-Martínez, Inés Contreras, Yara T. Lechanteur, Artin Domanian, Bram van Ginneken, Clara I. Sánchez
Purpose: To validate the performance of a commercially-available, CE-certified deep learning (DL) system, RetCAD v. 1. 3. 0 (Thirona, Nijmegen, The Netherlands), for the joint automatic detection of diabetic retinopathy (DR) and age-related macular degeneration (AMD) in color fundus (CF) images on a dataset with mixed presence of eye diseases.
no code implementations • 8 Mar 2019 • Keelin Murphy, Shifa Salman Habib, Syed Mohammad Asad Zaidi, Saira Khowaja, Aamir Khan, Jaime Melendez, Ernst T. Scholten, Farhan Amad, Steven Schalekamp, Maurits Verhagen, Rick H. H. M. Philipsen, Annet Meijers, Bram van Ginneken
A subset of 500 subjects (50% Xpert positive) was reviewed and annotated by 5 expert observers independently to obtain a radiological reference standard.
12 code implementations • 25 Feb 2019 • Amber L. Simpson, Michela Antonelli, Spyridon Bakas, Michel Bilello, Keyvan Farahani, Bram van Ginneken, Annette Kopp-Schneider, Bennett A. Landman, Geert Litjens, Bjoern Menze, Olaf Ronneberger, Ronald M. Summers, Patrick Bilic, Patrick F. Christ, Richard K. G. Do, Marc Gollub, Jennifer Golia-Pernicka, Stephan H. Heckers, William R. Jarnagin, Maureen K. McHugo, Sandy Napel, Eugene Vorontsov, Lena Maier-Hein, M. Jorge Cardoso
Semantic segmentation of medical images aims to associate a pixel with a label in a medical image without human initialization.
6 code implementations • 13 Jan 2019 • Patrick Bilic, Patrick Christ, Hongwei Bran Li, Eugene Vorontsov, Avi Ben-Cohen, Georgios Kaissis, Adi Szeskin, Colin Jacobs, Gabriel Efrain Humpire Mamani, Gabriel Chartrand, Fabian Lohöfer, Julian Walter Holch, Wieland Sommer, Felix Hofmann, Alexandre Hostettler, Naama Lev-Cohain, Michal Drozdzal, Michal Marianne Amitai, Refael Vivantik, Jacob Sosna, Ivan Ezhov, Anjany Sekuboyina, Fernando Navarro, Florian Kofler, Johannes C. Paetzold, Suprosanna Shit, Xiaobin Hu, Jana Lipková, Markus Rempfler, Marie Piraud, Jan Kirschke, Benedikt Wiestler, Zhiheng Zhang, Christian Hülsemeyer, Marcel Beetz, Florian Ettlinger, Michela Antonelli, Woong Bae, Míriam Bellver, Lei Bi, Hao Chen, Grzegorz Chlebus, Erik B. Dam, Qi Dou, Chi-Wing Fu, Bogdan Georgescu, Xavier Giró-i-Nieto, Felix Gruen, Xu Han, Pheng-Ann Heng, Jürgen Hesser, Jan Hendrik Moltz, Christian Igel, Fabian Isensee, Paul Jäger, Fucang Jia, Krishna Chaitanya Kaluva, Mahendra Khened, Ildoo Kim, Jae-Hun Kim, Sungwoong Kim, Simon Kohl, Tomasz Konopczynski, Avinash Kori, Ganapathy Krishnamurthi, Fan Li, Hongchao Li, Junbo Li, Xiaomeng Li, John Lowengrub, Jun Ma, Klaus Maier-Hein, Kevis-Kokitsi Maninis, Hans Meine, Dorit Merhof, Akshay Pai, Mathias Perslev, Jens Petersen, Jordi Pont-Tuset, Jin Qi, Xiaojuan Qi, Oliver Rippel, Karsten Roth, Ignacio Sarasua, Andrea Schenk, Zengming Shen, Jordi Torres, Christian Wachinger, Chunliang Wang, Leon Weninger, Jianrong Wu, Daguang Xu, Xiaoping Yang, Simon Chun-Ho Yu, Yading Yuan, Miao Yu, Liping Zhang, Jorge Cardoso, Spyridon Bakas, Rickmer Braren, Volker Heinemann, Christopher Pal, An Tang, Samuel Kadoury, Luc Soler, Bram van Ginneken, Hayit Greenspan, Leo Joskowicz, Bjoern Menze
In this work, we report the set-up and results of the Liver Tumor Segmentation Benchmark (LiTS), which was organized in conjunction with the IEEE International Symposium on Biomedical Imaging (ISBI) 2017 and the International Conferences on Medical Image Computing and Computer-Assisted Intervention (MICCAI) 2017 and 2018.
1 code implementation • 3 Dec 2018 • Davide Belli, Shi Hu, Ecem Sogancioglu, Bram van Ginneken
Chest X-rays are one of the most commonly used technologies for medical diagnosis.
1 code implementation • 30 Nov 2018 • Guilherme Aresta, Colin Jacobs, Teresa Araújo, António Cunha, Isabel Ramos, Bram van Ginneken, Aurélio Campilho
We propose iW-Net, a deep learning model that allows for both automatic and interactive segmentation of lung nodules in computed tomography images.
no code implementations • 13 Sep 2018 • Salome Kazeminia, Christoph Baur, Arjan Kuijper, Bram van Ginneken, Nassir Navab, Shadi Albarqouni, Anirban Mukhopadhyay
Generative Adversarial Networks (GANs) and their extensions have carved open many exciting ways to tackle well known and challenging medical image analysis problems such as medical image de-noising, reconstruction, segmentation, data simulation, detection or classification.
no code implementations • 29 Aug 2018 • Ecem Sogancioglu, Shi Hu, Davide Belli, Bram van Ginneken
Generative adversarial networks have been successfully applied to inpainting in natural images.
no code implementations • 17 Aug 2018 • Wouter Bulten, Péter Bándi, Jeffrey Hoven, Rob van de Loo, Johannes Lotz, Nick Weiss, Jeroen van der Laak, Bram van Ginneken, Christina Hulsbergen-van de Kaa, Geert Litjens
The H&E slides were co-registered to the IHC slides.
no code implementations • 6 Jun 2018 • Lena Maier-Hein, Matthias Eisenmann, Annika Reinke, Sinan Onogur, Marko Stankovic, Patrick Scholz, Tal Arbel, Hrvoje Bogunovic, Andrew P. Bradley, Aaron Carass, Carolin Feldmann, Alejandro F. Frangi, Peter M. Full, Bram van Ginneken, Allan Hanbury, Katrin Honauer, Michal Kozubek, Bennett A. Landman, Keno März, Oskar Maier, Klaus Maier-Hein, Bjoern H. Menze, Henning Müller, Peter F. Neher, Wiro Niessen, Nasir Rajpoot, Gregory C. Sharp, Korsuk Sirinukunwattana, Stefanie Speidel, Christian Stock, Danail Stoyanov, Abdel Aziz Taha, Fons van der Sommen, Ching-Wei Wang, Marc-André Weber, Guoyan Zheng, Pierre Jannin, Annette Kopp-Schneider
International challenges have become the standard for validation of biomedical image analysis methods.
1 code implementation • 12 Apr 2018 • Nikolas Lessmann, Bram van Ginneken, Pim A. de Jong, Ivana Išgum
Precise segmentation and anatomical identification of the vertebrae provides the basis for automatic analysis of the spine, such as detection of vertebral compression fractures or other abnormalities.
no code implementations • 15 Jan 2018 • Mohsen Ghafoorian, Jonas Teuwen, Rashindra Manniesing, Frank-Erik de Leeuw, Bram van Ginneken, Nico Karssemeijer, Bram Platel
To show this, we use noisy segmentation labels generated by a conventional region growing algorithm to train a deep network for lateral ventricle segmentation.
no code implementations • JAMA: The Journal of the American Medical Association 2017 • Babak Ehteshami Bejnordi, Mitko Veta, Paul Johannes van Diest, Bram van Ginneken, Nico Karssemeijer, Geert Litjens, Jeroen van der Laak, Meyke Hermsen, Quirine Manson, Maschenka Balkenhol, et al.
Conclusions and Relevance In the setting of a challenge competition, some deep learning algorithms achieved better diagnostic performance than a panel of 11 pathologists participating in a simulation exercise designed to mimic routine pathology workflow; algorithm performance was comparable with an expert pathologist interpreting whole-slide images without time constraints.
no code implementations • 1 Nov 2017 • Nikolas Lessmann, Bram van Ginneken, Majd Zreik, Pim A. de Jong, Bob D. de Vos, Max A. Viergever, Ivana Išgum
On soft filter reconstructions, the method achieved F1 scores of 0. 89, 0. 89, 0. 67, and 0. 55 for coronary artery, thoracic aorta, aortic valve and mitral valve calcifications, respectively.
no code implementations • 10 May 2017 • Babak Ehteshami Bejnordi, Guido Zuidhof, Maschenka Balkenhol, Meyke Hermsen, Peter Bult, Bram van Ginneken, Nico Karssemeijer, Geert Litjens, Jeroen van der Laak
Automated classification of histopathological whole-slide images (WSI) of breast tissue requires analysis at very high resolutions with a large contextual area.
no code implementations • 17 Mar 2017 • Péter Bándi, Rob van de Loo, Milad Intezar, Daan Geijs, Francesco Ciompi, Bram van Ginneken, Jeroen van der Laak, Geert Litjens
Tissue segmentation is an important pre-requisite for efficient and accurate diagnostics in digital pathology.
no code implementations • 25 Feb 2017 • Mohsen Ghafoorian, Alireza Mehrtash, Tina Kapur, Nico Karssemeijer, Elena Marchiori, Mehran Pesteie, Charles R. G. Guttmann, Frank-Erik de Leeuw, Clare M. Tempany, Bram van Ginneken, Andriy Fedorov, Purang Abolmaesumi, Bram Platel, William M. Wells III
In this study, we aim to answer the following central questions regarding domain adaptation in medical image analysis: Given a fitted legacy model, 1) How much data from the new domain is required for a decent adaptation of the original network?
1 code implementation • 20 Feb 2017 • Francesco Ciompi, Oscar Geessink, Babak Ehteshami Bejnordi, Gabriel Silva de Souza, Alexi Baidoshvili, Geert Litjens, Bram van Ginneken, Iris Nagtegaal, Jeroen van der Laak
The development of reliable imaging biomarkers for the analysis of colorectal cancer (CRC) in hematoxylin and eosin (H&E) stained histopathology images requires an accurate and reproducible classification of the main tissue components in the image.
no code implementations • 19 Feb 2017 • Geert Litjens, Thijs Kooi, Babak Ehteshami Bejnordi, Arnaud Arindra Adiyoso Setio, Francesco Ciompi, Mohsen Ghafoorian, Jeroen A. W. M. van der Laak, Bram van Ginneken, Clara I. Sánchez
Deep learning algorithms, in particular convolutional networks, have rapidly become a methodology of choice for analyzing medical images.
no code implementations • 23 Dec 2016 • Arnaud Arindra Adiyoso Setio, Alberto Traverso, Thomas de Bel, Moira S. N. Berens, Cas van den Bogaard, Piergiorgio Cerello, Hao Chen, Qi Dou, Maria Evelina Fantacci, Bram Geurts, Robbert van der Gugten, Pheng Ann Heng, Bart Jansen, Michael M. J. de Kaste, Valentin Kotov, Jack Yu-Hung Lin, Jeroen T. M. C. Manders, Alexander Sónora-Mengana, Juan Carlos García-Naranjo, Evgenia Papavasileiou, Mathias Prokop, Marco Saletta, Cornelia M Schaefer-Prokop, Ernst T. Scholten, Luuk Scholten, Miranda M. Snoeren, Ernesto Lopez Torres, Jef Vandemeulebroucke, Nicole Walasek, Guido C. A. Zuidhof, Bram van Ginneken, Colin Jacobs
We have therefore set up the LUNA16 challenge, an objective evaluation framework for automatic nodule detection algorithms using the largest publicly available reference database of chest CT scans, the LIDC-IDRI data set.
no code implementations • 28 Oct 2016 • Francesco Ciompi, Kaman Chung, Sarah J. van Riel, Arnaud Arindra Adiyoso Setio, Paul K. Gerke, Colin Jacobs, Ernst Th. Scholten, Cornelia Schaefer-Prokop, Mathilde M. W. Wille, Alfonso Marchiano, Ugo Pastorino, Mathias Prokop, Bram van Ginneken
The introduction of lung cancer screening programs will produce an unprecedented amount of chest CT scans in the near future, which radiologists will have to read in order to decide on a patient follow-up strategy.
no code implementations • 24 Oct 2016 • Mohsen Ghafoorian, Nico Karssemeijer, Tom Heskes, Mayra Bergkamp, Joost Wissink, Jiri Obels, Karlijn Keizer, Frank-Erik de Leeuw, Bram van Ginneken, Elena Marchiori, Bram Platel
In this paper, we propose an automated two-stage method using deep convolutional neural networks (CNN).
no code implementations • 16 Oct 2016 • Mohsen Ghafoorian, Nico Karssemeijer, Tom Heskes, Inge van Uden, Clara Sanchez, Geert Litjens, Frank-Erik de Leeuw, Bram van Ginneken, Elena Marchiori, Bram Platel
The anatomical location of imaging features is of crucial importance for accurate diagnosis in many medical tasks.