Search Results for author: Brendan Leigh Ross

Found 15 papers, 11 papers with code

Inconsistencies In Consistency Models: Better ODE Solving Does Not Imply Better Samples

1 code implementation13 Nov 2024 Noël Vouitsis, Rasa Hosseinzadeh, Brendan Leigh Ross, Valentin Villecroze, Satya Krishna Gorti, Jesse C. Cresswell, Gabriel Loaiza-Ganem

As a way to study how effectively CMs solve the probability flow ODE, and the effect that any induced error has on the quality of generated samples, we introduce Direct CMs, which \textit{directly} minimize this error.

A Geometric Framework for Understanding Memorization in Generative Models

no code implementations31 Oct 2024 Brendan Leigh Ross, Hamidreza Kamkari, Tongzi Wu, Rasa Hosseinzadeh, Zhaoyan Liu, George Stein, Jesse C. Cresswell, Gabriel Loaiza-Ganem

To better understand this phenomenon, we propose the manifold memorization hypothesis (MMH), a geometric framework which leverages the manifold hypothesis into a clear language in which to reason about memorization.

Memorization

A Geometric View of Data Complexity: Efficient Local Intrinsic Dimension Estimation with Diffusion Models

2 code implementations5 Jun 2024 Hamidreza Kamkari, Brendan Leigh Ross, Rasa Hosseinzadeh, Jesse C. Cresswell, Gabriel Loaiza-Ganem

High-dimensional data commonly lies on low-dimensional submanifolds, and estimating the local intrinsic dimension (LID) of a datum -- i. e. the dimension of the submanifold it belongs to -- is a longstanding problem.

Local intrinsic dimension estimation

Deep Generative Models through the Lens of the Manifold Hypothesis: A Survey and New Connections

1 code implementation3 Apr 2024 Gabriel Loaiza-Ganem, Brendan Leigh Ross, Rasa Hosseinzadeh, Anthony L. Caterini, Jesse C. Cresswell

This manifold lens provides both clarity as to why some DGMs (e. g. diffusion models and some generative adversarial networks) empirically surpass others (e. g. likelihood-based models such as variational autoencoders, normalizing flows, or energy-based models) at sample generation, and guidance for devising more performant DGMs.

A Geometric Explanation of the Likelihood OOD Detection Paradox

1 code implementation27 Mar 2024 Hamidreza Kamkari, Brendan Leigh Ross, Jesse C. Cresswell, Anthony L. Caterini, Rahul G. Krishnan, Gabriel Loaiza-Ganem

We also show that this scenario can be identified through local intrinsic dimension (LID) estimation, and propose a method for OOD detection which pairs the likelihoods and LID estimates obtained from a pre-trained DGM.

Exposing flaws of generative model evaluation metrics and their unfair treatment of diffusion models

3 code implementations NeurIPS 2023 George Stein, Jesse C. Cresswell, Rasa Hosseinzadeh, Yi Sui, Brendan Leigh Ross, Valentin Villecroze, Zhaoyan Liu, Anthony L. Caterini, J. Eric T. Taylor, Gabriel Loaiza-Ganem

Comparing to 17 modern metrics for evaluating the overall performance, fidelity, diversity, rarity, and memorization of generative models, we find that the state-of-the-art perceptual realism of diffusion models as judged by humans is not reflected in commonly reported metrics such as FID.

Diversity Image Generation +1

Denoising Deep Generative Models

1 code implementation30 Nov 2022 Gabriel Loaiza-Ganem, Brendan Leigh Ross, Luhuan Wu, John P. Cunningham, Jesse C. Cresswell, Anthony L. Caterini

Likelihood-based deep generative models have recently been shown to exhibit pathological behaviour under the manifold hypothesis as a consequence of using high-dimensional densities to model data with low-dimensional structure.

Denoising

CaloMan: Fast generation of calorimeter showers with density estimation on learned manifolds

1 code implementation23 Nov 2022 Jesse C. Cresswell, Brendan Leigh Ross, Gabriel Loaiza-Ganem, Humberto Reyes-Gonzalez, Marco Letizia, Anthony L. Caterini

Precision measurements and new physics searches at the Large Hadron Collider require efficient simulations of particle propagation and interactions within the detectors.

Density Estimation

Find Your Friends: Personalized Federated Learning with the Right Collaborators

no code implementations12 Oct 2022 Yi Sui, Junfeng Wen, Yenson Lau, Brendan Leigh Ross, Jesse C. Cresswell

In the traditional federated learning setting, a central server coordinates a network of clients to train one global model.

Personalized Federated Learning

Verifying the Union of Manifolds Hypothesis for Image Data

1 code implementation6 Jul 2022 Bradley C. A. Brown, Anthony L. Caterini, Brendan Leigh Ross, Jesse C. Cresswell, Gabriel Loaiza-Ganem

Assuming that data lies on a single manifold implies intrinsic dimension is identical across the entire data space, and does not allow for subregions of this space to have a different number of factors of variation.

Inductive Bias

Neural Implicit Manifold Learning for Topology-Aware Density Estimation

1 code implementation22 Jun 2022 Brendan Leigh Ross, Gabriel Loaiza-Ganem, Anthony L. Caterini, Jesse C. Cresswell

We then learn the probability density within $\mathcal{M}$ with a constrained energy-based model, which employs a constrained variant of Langevin dynamics to train and sample from the learned manifold.

Density Estimation

Diagnosing and Fixing Manifold Overfitting in Deep Generative Models

4 code implementations14 Apr 2022 Gabriel Loaiza-Ganem, Brendan Leigh Ross, Jesse C. Cresswell, Anthony L. Caterini

We propose a class of two-step procedures consisting of a dimensionality reduction step followed by maximum-likelihood density estimation, and prove that they recover the data-generating distribution in the nonparametric regime, thus avoiding manifold overfitting.

Density Estimation Dimensionality Reduction

Tractable Density Estimation on Learned Manifolds with Conformal Embedding Flows

1 code implementation NeurIPS 2021 Brendan Leigh Ross, Jesse C. Cresswell

Normalizing flows are generative models that provide tractable density estimation via an invertible transformation from a simple base distribution to a complex target distribution.

Density Estimation

Conformal Embedding Flows: Tractable Density Estimation on Learned Manifolds

no code implementations ICML Workshop INNF 2021 Brendan Leigh Ross, Jesse C Cresswell

Normalizing flows are generative models that provide tractable density estimation by transforming a simple distribution into a complex one.

Density Estimation

Cannot find the paper you are looking for? You can Submit a new open access paper.