Search Results for author: Brian Spears

Found 3 papers, 1 papers with code

Designing Accurate Emulators for Scientific Processes using Calibration-Driven Deep Models

no code implementations5 May 2020 Jayaraman J. Thiagarajan, Bindya Venkatesh, Rushil Anirudh, Peer-Timo Bremer, Jim Gaffney, Gemma Anderson, Brian Spears

Predictive models that accurately emulate complex scientific processes can achieve exponential speed-ups over numerical simulators or experiments, and at the same time provide surrogates for improving the subsequent analysis.

Small Data Image Classification

Enabling Machine Learning-Ready HPC Ensembles with Merlin

no code implementations5 Dec 2019 J. Luc Peterson, Ben Bay, Joe Koning, Peter Robinson, Jessica Semler, Jeremy White, Rushil Anirudh, Kevin Athey, Peer-Timo Bremer, Francesco Di Natale, David Fox, Jim A. Gaffney, Sam A. Jacobs, Bhavya Kailkhura, Bogdan Kustowski, Steven Langer, Brian Spears, Jayaraman Thiagarajan, Brian Van Essen, Jae-Seung Yeom

With the growing complexity of computational and experimental facilities, many scientific researchers are turning to machine learning (ML) techniques to analyze large scale ensemble data.

Parallelizing Training of Deep Generative Models on Massive Scientific Datasets

2 code implementations5 Oct 2019 Sam Ade Jacobs, Brian Van Essen, David Hysom, Jae-Seung Yeom, Tim Moon, Rushil Anirudh, Jayaraman J. Thiagaranjan, Shusen Liu, Peer-Timo Bremer, Jim Gaffney, Tom Benson, Peter Robinson, Luc Peterson, Brian Spears

Training deep neural networks on large scientific data is a challenging task that requires enormous compute power, especially if no pre-trained models exist to initialize the process.

Cannot find the paper you are looking for? You can Submit a new open access paper.