no code implementations • 16 Jul 2022 • Vainavi Viswanath, Kaushik Shivakumar, Justin Kerr, Brijen Thananjeyan, Ellen Novoseller, Jeffrey Ichnowski, Alejandro Escontrela, Michael Laskey, Joseph E. Gonzalez, Ken Goldberg
Cables are ubiquitous in many settings and it is often useful to untangle them.
1 code implementation • 29 Jun 2022 • Ryan Hoque, Lawrence Yunliang Chen, Satvik Sharma, Karthik Dharmarajan, Brijen Thananjeyan, Pieter Abbeel, Ken Goldberg
With continual learning, interventions from the remote pool of humans can also be used to improve the robot fleet control policy over time.
no code implementations • 9 Mar 2022 • Brijen Thananjeyan, Justin Kerr, Huang Huang, Joseph E. Gonzalez, Ken Goldberg
Large-scale semantic image annotation is a significant challenge for learning-based perception systems in robotics.
no code implementations • 7 Dec 2021 • Michael Luo, Ashwin Balakrishna, Brijen Thananjeyan, Suraj Nair, Julian Ibarz, Jie Tan, Chelsea Finn, Ion Stoica, Ken Goldberg
Safe exploration is critical for using reinforcement learning (RL) in risk-sensitive environments.
1 code implementation • 10 Jul 2021 • Albert Wilcox, Ashwin Balakrishna, Brijen Thananjeyan, Joseph E. Gonzalez, Ken Goldberg
We then present a new algorithm, Latent Space Safe Sets (LS3), which uses this representation for long-horizon tasks with sparse rewards.
1 code implementation • 30 Jun 2021 • Thomas Kollar, Michael Laskey, Kevin Stone, Brijen Thananjeyan, Mark Tjersland
However, the RGB-D baseline only grasps 35% of the hard (e. g., transparent) objects, while SimNet grasps 95%, suggesting that SimNet can enable robust manipulation of unknown objects, including transparent objects, in unknown environments.
no code implementations • 29 Jun 2021 • Priya Sundaresan, Jennifer Grannen, Brijen Thananjeyan, Ashwin Balakrishna, Jeffrey Ichnowski, Ellen Novoseller, Minho Hwang, Michael Laskey, Joseph E. Gonzalez, Ken Goldberg
We present two algorithms that enhance robust cable untangling, LOKI and SPiDERMan, which operate alongside HULK, a high-level planner from prior work.
no code implementations • 6 Jun 2021 • Brijen Thananjeyan, Kirthevasan Kandasamy, Ion Stoica, Michael I. Jordan, Ken Goldberg, Joseph E. Gonzalez
In this work, the decision-maker is given a deadline of $T$ rounds, where, on each round, it can adaptively choose which arms to pull and how many times to pull them; this distinguishes the number of decisions made (i. e., time or number of rounds) from the number of samples acquired (cost).
no code implementations • 4 Jun 2021 • Vainavi Viswanath, Jennifer Grannen, Priya Sundaresan, Brijen Thananjeyan, Ashwin Balakrishna, Ellen Novoseller, Jeffrey Ichnowski, Michael Laskey, Joseph E. Gonzalez, Ken Goldberg
Disentangling two or more cables requires many steps to remove crossings between and within cables.
no code implementations • 31 Mar 2021 • Ryan Hoque, Ashwin Balakrishna, Carl Putterman, Michael Luo, Daniel S. Brown, Daniel Seita, Brijen Thananjeyan, Ellen Novoseller, Ken Goldberg
Corrective interventions while a robot is learning to automate a task provide an intuitive method for a human supervisor to assist the robot and convey information about desired behavior.
no code implementations • 23 Dec 2020 • Minho Hwang, Brijen Thananjeyan, Daniel Seita, Jeffrey Ichnowski, Samuel Paradis, Danyal Fer, Thomas Low, Ken Goldberg
Peg transfer is a well-known surgical training task in the Fundamentals of Laparoscopic Surgery (FLS).
Robotics
no code implementations • 10 Nov 2020 • Jennifer Grannen, Priya Sundaresan, Brijen Thananjeyan, Jeffrey Ichnowski, Ashwin Balakrishna, Minho Hwang, Vainavi Viswanath, Michael Laskey, Joseph E. Gonzalez, Ken Goldberg
HULK successfully untangles a cable from a dense initial configuration containing up to two overhand and figure-eight knots in 97. 9% of 378 simulation experiments with an average of 12. 1 actions per trial.
no code implementations • 31 Oct 2020 • Brijen Thananjeyan, Kirthevasan Kandasamy, Ion Stoica, Michael I. Jordan, Ken Goldberg, Joseph E. Gonzalez
Second, we present an algorithm for a fixed deadline setting, where we are given a time deadline and need to maximize the probability of finding the best arm.
2 code implementations • 29 Oct 2020 • Brijen Thananjeyan, Ashwin Balakrishna, Suraj Nair, Michael Luo, Krishnan Srinivasan, Minho Hwang, Joseph E. Gonzalez, Julian Ibarz, Chelsea Finn, Ken Goldberg
Safety remains a central obstacle preventing widespread use of RL in the real world: learning new tasks in uncertain environments requires extensive exploration, but safety requires limiting exploration.
no code implementations • 9 Oct 2020 • Aditya Ganapathi, Priya Sundaresan, Brijen Thananjeyan, Ashwin Balakrishna, Daniel Seita, Ryan Hoque, Joseph E. Gonzalez, Ken Goldberg
We explore learning pixelwise correspondences between images of deformable objects in different configurations.
no code implementations • 28 Mar 2020 • Aditya Ganapathi, Priya Sundaresan, Brijen Thananjeyan, Ashwin Balakrishna, Daniel Seita, Jennifer Grannen, Minho Hwang, Ryan Hoque, Joseph E. Gonzalez, Nawid Jamali, Katsu Yamane, Soshi Iba, Ken Goldberg
Robotic fabric manipulation is challenging due to the infinite dimensional configuration space, self-occlusion, and complex dynamics of fabrics.
no code implementations • 19 Mar 2020 • Minho Hwang, Brijen Thananjeyan, Samuel Paradis, Daniel Seita, Jeffrey Ichnowski, Danyal Fer, Thomas Low, Ken Goldberg
Automation of surgical subtasks using cable-driven robotic surgical assistants (RSAs) such as Intuitive Surgical's da Vinci Research Kit (dVRK) is challenging due to imprecision in control from cable-related effects such as cable stretching and hysteresis.
no code implementations • 3 Mar 2020 • Priya Sundaresan, Jennifer Grannen, Brijen Thananjeyan, Ashwin Balakrishna, Michael Laskey, Kevin Stone, Joseph E. Gonzalez, Ken Goldberg
We address these challenges using interpretable deep visual representations for rope, extending recent work on dense object descriptors for robot manipulation.
no code implementations • 3 Mar 2020 • Brijen Thananjeyan, Ashwin Balakrishna, Ugo Rosolia, Joseph E. Gonzalez, Aaron Ames, Ken Goldberg
Sample-based learning model predictive control (LMPC) strategies have recently attracted attention due to their desirable theoretical properties and their good empirical performance on robotic tasks.
no code implementations • 15 Feb 2020 • Minho Hwang, Daniel Seita, Brijen Thananjeyan, Jeffrey Ichnowski, Samuel Paradis, Danyal Fer, Thomas Low, Ken Goldberg
We report experimental results for a handover-free version of the peg transfer task, performing 20 and 5 physical episodes with single- and bilateral-arm setups, respectively.
Robotics
1 code implementation • 23 Sep 2019 • Daniel Seita, Aditya Ganapathi, Ryan Hoque, Minho Hwang, Edward Cen, Ajay Kumar Tanwani, Ashwin Balakrishna, Brijen Thananjeyan, Jeffrey Ichnowski, Nawid Jamali, Katsu Yamane, Soshi Iba, John Canny, Ken Goldberg
In 180 physical experiments with the da Vinci Research Kit (dVRK) surgical robot, RGBD policies trained in simulation attain coverage of 83% to 95% depending on difficulty tier, suggesting that effective fabric smoothing policies can be learned from an algorithmic supervisor and that depth sensing is a valuable addition to color alone.
no code implementations • 8 Jul 2019 • Ashwin Balakrishna, Brijen Thananjeyan, Jonathan Lee, Felix Li, Arsh Zahed, Joseph E. Gonzalez, Ken Goldberg
Existing on-policy imitation learning algorithms, such as DAgger, assume access to a fixed supervisor.
no code implementations • 31 May 2019 • Brijen Thananjeyan, Ashwin Balakrishna, Ugo Rosolia, Felix Li, Rowan Mcallister, Joseph E. Gonzalez, Sergey Levine, Francesco Borrelli, Ken Goldberg
Reinforcement learning (RL) for robotics is challenging due to the difficulty in hand-engineering a dense cost function, which can lead to unintended behavior, and dynamical uncertainty, which makes exploration and constraint satisfaction challenging.
Model-based Reinforcement Learning
reinforcement-learning
+1