Search Results for author: Byeonghu Na

Found 5 papers, 4 papers with code

Unknown-Aware Domain Adversarial Learning for Open-Set Domain Adaptation

1 code implementation15 Jun 2022 JoonHo Jang, Byeonghu Na, DongHyeok Shin, Mingi Ji, Kyungwoo Song, Il-Chul Moon

Therefore, we propose Unknown-Aware Domain Adversarial Learning (UADAL), which $\textit{aligns}$ the source and the target-$\textit{known}$ distribution while simultaneously $\textit{segregating}$ the target-$\textit{unknown}$ distribution in the feature alignment procedure.

Domain Adaptation

Maximum Likelihood Training of Implicit Nonlinear Diffusion Models

1 code implementation27 May 2022 Dongjun Kim, Byeonghu Na, Se Jung Kwon, Dongsoo Lee, Wanmo Kang, Il-Chul Moon

Whereas diverse variations of diffusion models exist, extending the linear diffusion into a nonlinear diffusion process is investigated by very few works.

Image Generation

Multi-modal Text Recognition Networks: Interactive Enhancements between Visual and Semantic Features

1 code implementation30 Nov 2021 Byeonghu Na, Yoonsik Kim, Sungrae Park

Furthermore, MATRN stimulates combining semantic features into visual features by hiding visual clues related to the character in the training phase.

Scene Text Recognition

Maximum Likelihood Training of Parametrized Diffusion Model

no code implementations29 Sep 2021 Dongjun Kim, Byeonghu Na, Se Jung Kwon, Dongsoo Lee, Wanmo Kang, Il-Chul Moon

Specifically, PDM utilizes the flow to non-linearly transform a data variable into a latent variable, and PDM applies the diffusion process to the transformed latent distribution with the linear diffusing mechanism.

Image Generation

Cannot find the paper you are looking for? You can Submit a new open access paper.