no code implementations • CVPR 2024 • Jaeho Moon, Juan Luis Gonzalez Bello, Byeongjun Kwon, Munchurl Kim
Subsequently, in the fine training stage, we refine the DE network to learn the detailed depth of the objects from the reprojection loss, while ensuring accurate DE on the moving object regions by employing our regularization loss with a cost-volume-based weighting factor.
no code implementations • 7 Nov 2022 • Andrey Ignatov, Radu Timofte, Jin Zhang, Feng Zhang, Gaocheng Yu, Zhe Ma, Hongbin Wang, Minsu Kwon, Haotian Qian, Wentao Tong, Pan Mu, Ziping Wang, Guangjing Yan, Brian Lee, Lei Fei, Huaijin Chen, Hyebin Cho, Byeongjun Kwon, Munchurl Kim, Mingyang Qian, Huixin Ma, Yanan Li, Xiaotao Wang, Lei Lei
In this Mobile AI challenge, the target was to develop an efficient end-to-end AI-based bokeh effect rendering approach that can run on modern smartphone GPUs using TensorFlow Lite.