no code implementations • Expert Systems with Applications 2024 • Fei Li a, C, ∗, Qiang Yue a, B, Yuanchao Liu d, Haibin Ouyang e, Fangqing Gu f
First, a fast density peak clustering is applied to create multiple sub-populations, which can help the algorithm locate peaks.
no code implementations • journal 2023 • Rehan Raza a, B, Fatima Zulfiqar c, D, Muhammad Owais Khan b, C, Muhammad Arif e, Atif Alvi b, Muhammad Aksam Iftikhar c, Tanvir Alam e, *
Lung-EffNet is built based on the architecture of EfficientNet and further modified by adding top layers in the classification head of the model.
no code implementations • LREC 2020 • Lucie Barque, Pauline Haas, Richard Huyghe, Delphine Tribout, C, Marie ito, Benoit Crabb{\'e}, Vincent Segonne
French, as many languages, lacks semantically annotated corpus data.
no code implementations • Journal of Cleaner Production 2020 • Lin Li a, Xiaoqiang Zhang a, B, C, *
To reduce carbon emissions from inland freight, one way is to encourage rail transportation instead of truck transportation.
1 code implementation • Magnetic Resonance Imaging 2019 • Xuexiao Youa, B, Ning Caoa, ⁎, Hao Lua, Minghe Maoa, Wei Wanga, C
The first model is specific to a certain noise, while the other applies to a wide range of noise levels.
no code implementations • SEMEVAL 2019 • Behrang QasemiZadeh, Miriam R. L. Petruck, Regina Stodden, Laura Kallmeyer, C, Marie ito
This paper presents Unsupervised Lexical Frame Induction, Task 2 of the International Workshop on Semantic Evaluation in 2019.
no code implementations • WS 2019 • Vincent Segonne, C, Marie ito, Beno{\^\i}t Crabb{\'e}
In this paper, we investigate which strategy to adopt to achieve WSD for languages lacking data that was annotated specifically for the task, focusing on the particular case of verb disambiguation in French.
no code implementations • 1 May 2019 • Yukun Li a, Zhenguo Yang b, C, ∗, Xu Chen a, Huaping Yuan b, Wenyin Liu b, ∗∗
In this paper, we present a stacking model to detect phishing webpages using URL and HTML features.
no code implementations • COLING 2018 • Carlos Ramisch, Silvio Ricardo Cordeiro, Agata Savary, Veronika Vincze, Verginica Barbu Mititelu, Archna Bhatia, Maja Buljan, C, Marie ito, Polona Gantar, Voula Giouli, Tunga G{\"u}ng{\"o}r, Abdelati Hawwari, Uxoa I{\~n}urrieta, Jolanta Kovalevskait{\.e}, Simon Krek, Timm Lichte, Chaya Liebeskind, Johanna Monti, Carla Parra Escart{\'\i}n, Behrang Qasemizadeh, Renata Ramisch, Nathan Schneider, Ivelina Stoyanova, Ashwini Vaidya, Abigail Walsh
Corpora were created for 20 languages, which are also briefly discussed.
no code implementations • Computer Methods and Programs in Biomedicine 2018 • U Rajendra Acharyaa, B, C, *, Shu Lih Oha, Yuki Hagiwaraa, Jen Hong Tana, Hojjat Adelid, D P Subhae
It was discovered in this research that the EEG signals from the right hemisphere are more distinctive in depression than those from the left hemisphere.
no code implementations • 1 Oct 2017 • Fiorenzo Artoni a, Chiara Fanciullacci a, C, Federica Bertolucci c, Alessandro Panarese a, Scott Makeig d, Silvestro Micera a, B, 1, Carmelo Chisari
One sentence summary: Motor cortex proactively drives contralateral swing leg muscles during treadmill walking, counter to the traditional view of stereotyped human locomotion
no code implementations • JEPTALNRECITAL 2017 • C, Marie ito, Mathieu Constant, Carlos Ramisch, Agata Savary, Yannick Parmentier, Caroline Pasquer, Jean-Yves Antoine
Nous d{\'e}crivons la partie fran{\c{c}}aise des donn{\'e}es produites dans le cadre de la campagne multilingue PARSEME sur l{'}identification d{'}expressions polylexicales verbales (Savary et al., 2017).
no code implementations • WS 2017 • Agata Savary, Carlos Ramisch, Silvio Cordeiro, Federico Sangati, Veronika Vincze, Behrang Qasemizadeh, C, Marie ito, Fabienne Cap, Voula Giouli, Ivelina Stoyanova, Antoine Doucet
This paper presents the corpus annotation methodology and outcome, the shared task organisation and the results of the participating systems.
no code implementations • WS 2017 • Hazem Al Saied, Matthieu Constant, C, Marie ito
We describe the ATILF-LLF system built for the MWE 2017 Shared Task on automatic identification of verbal multiword expressions.
no code implementations • COLING 2016 • Olivier Michalon, Corentin Ribeyre, C, Marie ito, Alexis Nasr
Syntax plays an important role in the task of predicting the semantic structure of a sentence.
no code implementations • LREC 2016 • Laure Vieu, Philippe Muller, C, Marie ito, Marianne Djemaa
We present here a general set of semantic frames to annotate causal expressions, with a rich lexicon in French and an annotated corpus of about 5000 instances of causal lexical items with their corresponding semantic frames.
no code implementations • LREC 2016 • Marianne Djemaa, C, Marie ito, Philippe Muller, Laure Vieu
This paper reports on the development of a French FrameNet, within the ASFALDA project.
no code implementations • LREC 2016 • Djam{\'e} Seddah, C, Marie ito
We present the French Question Bank, a treebank of 2600 questions.
no code implementations • LREC 2016 • Jorge Proen{\c{c}}a, Dirce Celorico, C, Sara eias, Carla Lopes, Fern Perdig{\~a}o, o
The motivation for the creation of this corpus stems from the inexistence of databases with recordings of reading tasks of Portuguese children with different performance levels and including all the common reading aloud disfluencies.
1 code implementation • LREC 2016 • Alex Becker, Fabio Kepler, C, Sara eias
By building a collaborative, online, easy to use annotation tool for building parallel corpora between spoken and sign languages we aim at helping the development of proper resources for sign languages that can then be used in state-of-the-art models currently used in tools for spoken languages.
no code implementations • WS 2015 • C, Arnaldo ido Junior, Thiago Lima Vieira, Marcel Serikawa, Matheus Antonio Ribeiro Silva, R{\'e}gis Zangirolami, S Alu{\'\i}sio, ra Maria
no code implementations • LREC 2014 • C, Sara eias, Dirce Celorico, Jorge Proen{\c{c}}a, Arlindo Veiga, Carla Lopes, Fern Perdig{\~a}o, o
Hesitations, so-called disfluencies, are a characteristic of spontaneous speech, playing a primary role in its structure, reflecting aspects of the language production and the management of inter-communication.
no code implementations • LREC 2014 • C, Marie ito, Pascal Amsili, Lucie Barque, Farah Benamara, Ga{\"e}l de Chalendar, Marianne Djemaa, Pauline Haas, Richard Huyghe, Yvette Yannick Mathieu, Philippe Muller, Beno{\^\i}t Sagot, Laure Vieu
The Asfalda project aims to develop a French corpus with frame-based semantic annotations and automatic tools for shallow semantic analysis.
no code implementations • LREC 2014 • C, Marie ito, Guy Perrier, Bruno Guillaume, Corentin Ribeyre, Kar{\"e}n Fort, Djam{\'e} Seddah, {\'E}ric de la Clergerie
We define a deep syntactic representation scheme for French, which abstracts away from surface syntactic variation and diathesis alternations, and describe the annotation of deep syntactic representations on top of the surface dependency trees of the Sequoia corpus.
no code implementations • WS 2013 • Djam{\'e} Seddah, Reut Tsarfaty, S K{\"u}bler, ra, C, Marie ito, Jinho D. Choi, Rich{\'a}rd Farkas, Jennifer Foster, Iakes Goenaga, Koldo Gojenola Galletebeitia, Yoav Goldberg, Spence Green, Nizar Habash, Marco Kuhlmann, Wolfgang Maier, Joakim Nivre, Adam Przepi{\'o}rkowski, Ryan Roth, Wolfgang Seeker, Yannick Versley, Veronika Vincze, Marcin Woli{\'n}ski, Alina Wr{\'o}blewska, Eric Villemonte de la Clergerie
no code implementations • LREC 2012 • Djam{\'e} Seddah, C, Marie ito, Benoit Crabb{\'e}, Enrique Henestroza Anguiano
In this paper, we introduce a set of resources that we have derived from the EST R{\'E}PUBLICAIN CORPUS, a large, freely-available collection of regional newspaper articles in French, totaling 150 million words.
no code implementations • LREC 2012 • Carmen Dayrell, C, Arnaldo ido Jr., Gabriel Lima, Danilo Machado Jr., Ann Copestake, Val{\'e}ria Feltrim, Stella Tagnin, S Aluisio, ra
Here, we present MAZEA (Multi-label Argumentative Zoning for English Abstracts), a multi-label classifier which automatically identifies rhetorical moves in abstracts but allows for a given sentence to be assigned as many labels as appropriate.