Search Results for author: Camir Ricketts

Found 2 papers, 0 papers with code

BioNeMo Framework: a modular, high-performance library for AI model development in drug discovery

no code implementations15 Nov 2024 Peter St. John, Dejun Lin, Polina Binder, Malcolm Greaves, Vega Shah, John St. John, Adrian Lange, Patrick Hsu, Rajesh Illango, Arvind Ramanathan, Anima Anandkumar, David H Brookes, Akosua Busia, Abhishaike Mahajan, Stephen Malina, Neha Prasad, Sam Sinai, Lindsay Edwards, Thomas Gaudelet, Cristian Regep, Martin Steinegger, Burkhard Rost, Alexander Brace, Kyle Hippe, Luca Naef, Keisuke Kamata, George Armstrong, Kevin Boyd, Zhonglin Cao, Han-Yi Chou, Simon Chu, Allan dos Santos Costa, Sajad Darabi, Eric Dawson, Kieran Didi, Cong Fu, Mario Geiger, Michelle Gill, Darren Hsu, Gagan Kaushik, Maria Korshunova, Steven Kothen-Hill, Youhan Lee, Meng Liu, Micha Livne, Zachary McClure, Jonathan Mitchell, Alireza Moradzadeh, Ohad Mosafi, Youssef Nashed, Yuxing Peng, Sara Rabhi, Farhad Ramezanghorbani, Danny Reidenbach, Camir Ricketts, Brian Roland, Kushal Shah, Tyler Shimko, Hassan Sirelkhatim, Savitha Srinivasan, Abraham C Stern, Dorota Toczydlowska, Srimukh Prasad Veccham, Niccolò Alberto Elia Venanzi, Anton Vorontsov, Jared Wilber, Isabel Wilkinson, Wei Jing Wong, Eva Xue, Cory Ye, Xin Yu, Yang Zhang, Guoqing Zhou, Becca Zandstein, Christian Dallago, Bruno Trentini, Emine Kucukbenli, Saee Paliwal, Timur Rvachov, Eddie Calleja, Johnny Israeli, Harry Clifford, Risto Haukioja, Nicholas Haemel, Kyle Tretina, Neha Tadimeti, Anthony B Costa

We introduce the BioNeMo Framework to facilitate the training of computational biology and chemistry AI models across hundreds of GPUs.

Drug Discovery

Empowering Federated Learning for Massive Models with NVIDIA FLARE

no code implementations12 Feb 2024 Holger R. Roth, Ziyue Xu, Yuan-Ting Hsieh, Adithya Renduchintala, Isaac Yang, Zhihong Zhang, Yuhong Wen, Sean Yang, Kevin Lu, Kristopher Kersten, Camir Ricketts, Daguang Xu, Chester Chen, Yan Cheng, Andrew Feng

In the ever-evolving landscape of artificial intelligence (AI) and large language models (LLMs), handling and leveraging data effectively has become a critical challenge.

Federated Learning

Cannot find the paper you are looking for? You can Submit a new open access paper.