Search Results for author: Carlo Biffi

Found 14 papers, 9 papers with code

A Temporal Convolutional Network-Based Approach and a Benchmark Dataset for Colonoscopy Video Temporal Segmentation

no code implementations5 Feb 2025 Carlo Biffi, Giorgio Roffo, Pietro Salvagnini, Andrea Cherubini

We then present ColonTCN, a learning-based architecture that employs custom temporal convolutional blocks designed to efficiently capture long temporal dependencies for the temporal segmentation of colonoscopy videos.

Hard-Attention Gates with Gradient Routing for Endoscopic Image Computing

1 code implementation5 Jul 2024 Giorgio Roffo, Carlo Biffi, Pietro Salvagnini, Andrea Cherubini

To address overfitting and enhance model generalization in gastroenterological polyp size assessment, our study introduces Feature-Selection Gates (FSG) or Hard-Attention Gates (HAG) alongside Gradient Routing (GR) for dynamic feature selection.

Binary Classification feature selection +1

VS-Net: Variable splitting network for accelerated parallel MRI reconstruction

1 code implementation19 Jul 2019 Jinming Duan, Jo Schlemper, Chen Qin, Cheng Ouyang, Wenjia Bai, Carlo Biffi, Ghalib Bello, Ben Statton, Declan P. O'Regan, Daniel Rueckert

In this work, we propose a deep learning approach for parallel magnetic resonance imaging (MRI) reconstruction, termed a variable splitting network (VS-Net), for an efficient, high-quality reconstruction of undersampled multi-coil MR data.

Deep Learning MRI Reconstruction +1

Data Efficient Unsupervised Domain Adaptation for Cross-Modality Image Segmentation

no code implementations5 Jul 2019 Cheng Ouyang, Konstantinos Kamnitsas, Carlo Biffi, Jinming Duan, Daniel Rueckert

Deep unsupervised domain adaptation (UDA) aims to improve the performance of a deep neural network model on a target domain, using solely unlabelled target domain data and labelled source domain data.

Image Segmentation Medical Image Segmentation +3

Explainable Anatomical Shape Analysis through Deep Hierarchical Generative Models

1 code implementation28 Jun 2019 Carlo Biffi, Juan J. Cerrolaza, Giacomo Tarroni, Wenjia Bai, Antonio de Marvao, Ozan Oktay, Christian Ledig, Loic Le Folgoc, Konstantinos Kamnitsas, Georgia Doumou, Jinming Duan, Sanjay K. Prasad, Stuart A. Cook, Declan P. O'Regan, Daniel Rueckert

At the highest level of this hierarchy, a two-dimensional latent space is simultaneously optimised to discriminate distinct clinical conditions, enabling the direct visualisation of the classification space.

Anatomy

Cannot find the paper you are looking for? You can Submit a new open access paper.