no code implementations • 5 Feb 2025 • Carlo Biffi, Giorgio Roffo, Pietro Salvagnini, Andrea Cherubini
We then present ColonTCN, a learning-based architecture that employs custom temporal convolutional blocks designed to efficiently capture long temporal dependencies for the temporal segmentation of colonoscopy videos.
1 code implementation • 5 Jul 2024 • Giorgio Roffo, Carlo Biffi, Pietro Salvagnini, Andrea Cherubini
To address overfitting and enhance model generalization in gastroenterological polyp size assessment, our study introduces Feature-Selection Gates (FSG) or Hard-Attention Gates (HAG) alongside Gradient Routing (GR) for dynamic feature selection.
2 code implementations • 4 Mar 2024 • Carlo Biffi, Giulio Antonelli, Sebastian Bernhofer, Cesare Hassan, Daizen Hirata, Mineo Iwatate, Andreas Maieron, Pietro Salvagnini, Andrea Cherubini
Detection and diagnosis of colon polyps are key to preventing colorectal cancer.
1 code implementation • ECCV 2020 • Carlo Biffi, Steven McDonagh, Philip Torr, Ales Leonardis, Sarah Parisot
Object detection has witnessed significant progress by relying on large, manually annotated datasets.
4 code implementations • ECCV 2020 • Cheng Ouyang, Carlo Biffi, Chen Chen, Turkay Kart, Huaqi Qiu, Daniel Rueckert
Few-shot semantic segmentation (FSS) has great potential for medical imaging applications.
no code implementations • 23 Jul 2019 • Chen Chen, Carlo Biffi, Giacomo Tarroni, Steffen Petersen, Wenjia Bai, Daniel Rueckert
Cardiac MR image segmentation is essential for the morphological and functional analysis of the heart.
1 code implementation • 19 Jul 2019 • Jinming Duan, Jo Schlemper, Chen Qin, Cheng Ouyang, Wenjia Bai, Carlo Biffi, Ghalib Bello, Ben Statton, Declan P. O'Regan, Daniel Rueckert
In this work, we propose a deep learning approach for parallel magnetic resonance imaging (MRI) reconstruction, termed a variable splitting network (VS-Net), for an efficient, high-quality reconstruction of undersampled multi-coil MR data.
no code implementations • 5 Jul 2019 • Cheng Ouyang, Konstantinos Kamnitsas, Carlo Biffi, Jinming Duan, Daniel Rueckert
Deep unsupervised domain adaptation (UDA) aims to improve the performance of a deep neural network model on a target domain, using solely unlabelled target domain data and labelled source domain data.
1 code implementation • 28 Jun 2019 • Carlo Biffi, Juan J. Cerrolaza, Giacomo Tarroni, Wenjia Bai, Antonio de Marvao, Ozan Oktay, Christian Ledig, Loic Le Folgoc, Konstantinos Kamnitsas, Georgia Doumou, Jinming Duan, Sanjay K. Prasad, Stuart A. Cook, Declan P. O'Regan, Daniel Rueckert
At the highest level of this hierarchy, a two-dimensional latent space is simultaneously optimised to discriminate distinct clinical conditions, enabling the direct visualisation of the classification space.
no code implementations • 28 Feb 2019 • Carlo Biffi, Juan J. Cerrolaza, Giacomo Tarroni, Antonio de Marvao, Stuart A. Cook, Declan P. O'Regan, Daniel Rueckert
Accurate segmentation of heart structures imaged by cardiac MR is key for the quantitative analysis of pathology.
no code implementations • 31 Jan 2019 • Cheng Ouyang, Jo Schlemper, Carlo Biffi, Gavin Seegoolam, Jose Caballero, Anthony N. Price, Joseph V. Hajnal, Daniel Rueckert
We look into robustness of deep learning based MRI reconstruction when tested on unseen contrasts and organs.
1 code implementation • 8 Oct 2018 • Ghalib A. Bello, Timothy J. W. Dawes, Jinming Duan, Carlo Biffi, Antonio de Marvao, Luke S. G. E. Howard, J. Simon R. Gibbs, Martin R. Wilkins, Stuart A. Cook, Daniel Rueckert, Declan P. O'Regan
Motion analysis is used in computer vision to understand the behaviour of moving objects in sequences of images.
1 code implementation • 26 Aug 2018 • Jinming Duan, Ghalib Bello, Jo Schlemper, Wenjia Bai, Timothy J. W. Dawes, Carlo Biffi, Antonio de Marvao, Georgia Doumou, Declan P. O'Regan, Daniel Rueckert
The proposed pipeline is fully automated, due to network's ability to infer landmarks, which are then used downstream in the pipeline to initialise atlas propagation.
1 code implementation • 18 Jul 2018 • Carlo Biffi, Ozan Oktay, Giacomo Tarroni, Wenjia Bai, Antonio de Marvao, Georgia Doumou, Martin Rajchl, Reem Bedair, Sanjay Prasad, Stuart Cook, Declan O'Regan, Daniel Rueckert
However, current approaches to the diagnosis of cardiovascular diseases often rely on subjective human assessment as well as manual analysis of medical images.