no code implementations • 25 Apr 2024 • Shay Snyder, Victoria Clerico, Guojing Cong, Shruti Kulkarni, Catherine Schuman, Sumedh R. Risbud, Maryam Parsa
We showcase the performance benefits of combining neuromorphic Bayesian optimization with our approach for citation graph classification using fixed-precision spiking neurons.
no code implementations • 15 May 2023 • Céline van Valkenhoef, Catherine Schuman, Philip Walther
The human brain has inspired novel concepts complementary to classical and quantum computing architectures, such as artificial neural networks and neuromorphic computers, but it is not clear how their performances compare.
1 code implementation • 10 Apr 2023 • Jason Yik, Korneel Van den Berghe, Douwe den Blanken, Younes Bouhadjar, Maxime Fabre, Paul Hueber, Weijie Ke, Mina A Khoei, Denis Kleyko, Noah Pacik-Nelson, Alessandro Pierro, Philipp Stratmann, Pao-Sheng Vincent Sun, Guangzhi Tang, Shenqi Wang, Biyan Zhou, Soikat Hasan Ahmed, George Vathakkattil Joseph, Benedetto Leto, Aurora Micheli, Anurag Kumar Mishra, Gregor Lenz, Tao Sun, Zergham Ahmed, Mahmoud Akl, Brian Anderson, Andreas G. Andreou, Chiara Bartolozzi, Arindam Basu, Petrut Bogdan, Sander Bohte, Sonia Buckley, Gert Cauwenberghs, Elisabetta Chicca, Federico Corradi, Guido de Croon, Andreea Danielescu, Anurag Daram, Mike Davies, Yigit Demirag, Jason Eshraghian, Tobias Fischer, Jeremy Forest, Vittorio Fra, Steve Furber, P. Michael Furlong, William Gilpin, Aditya Gilra, Hector A. Gonzalez, Giacomo Indiveri, Siddharth Joshi, Vedant Karia, Lyes Khacef, James C. Knight, Laura Kriener, Rajkumar Kubendran, Dhireesha Kudithipudi, Shih-Chii Liu, Yao-Hong Liu, Haoyuan Ma, Rajit Manohar, Josep Maria Margarit-Taulé, Christian Mayr, Konstantinos Michmizos, Dylan R. Muir, Emre Neftci, Thomas Nowotny, Fabrizio Ottati, Ayca Ozcelikkale, Priyadarshini Panda, Jongkil Park, Melika Payvand, Christian Pehle, Mihai A. Petrovici, Christoph Posch, Alpha Renner, Yulia Sandamirskaya, Clemens JS Schaefer, André van Schaik, Johannes Schemmel, Samuel Schmidgall, Catherine Schuman, Jae-sun Seo, Sadique Sheik, Sumit Bam Shrestha, Manolis Sifalakis, Amos Sironi, Kenneth Stewart, Matthew Stewart, Terrence C. Stewart, Jonathan Timcheck, Nergis Tömen, Gianvito Urgese, Marian Verhelst, Craig M. Vineyard, Bernhard Vogginger, Amirreza Yousefzadeh, Fatima Tuz Zohora, Charlotte Frenkel, Vijay Janapa Reddi
To address these shortcomings, we present NeuroBench: a benchmark framework for neuromorphic computing algorithms and systems.
no code implementations • 28 Sep 2022 • Samuel Schmidgall, Catherine Schuman, Maryam Parsa
Grand efforts in neuroscience are working toward mapping the connectomes of many new species, including the near completion of the Drosophila melanogaster.
no code implementations • 15 Aug 2022 • Prasanna Date, Shruti Kulkarni, Aaron Young, Catherine Schuman, Thomas Potok, Jeffrey Vetter
They are expected to be indispensable for energy-efficient computing in the future.
no code implementations • 28 Apr 2021 • Prasanna Date, Catherine Schuman, Bill Kay, Thomas Potok
Given that the {\mu}-recursive functions and operators are precisely the ones that can be computed using a Turing machine, this work establishes the Turing-completeness of neuromorphic computing.
no code implementations • 6 Mar 2020 • Theodore Papamarkou, Hayley Guy, Bryce Kroencke, Jordan Miller, Preston Robinette, Daniel Schultz, Jacob Hinkle, Laura Pullum, Catherine Schuman, Jeremy Renshaw, Stylianos Chatzidakis
The results demonstrate that such a deep learning approach allows to detect the locus of corrosion via smaller tiles, and at the same time to infer with high accuracy whether an image comes from a corroded canister.
no code implementations • 15 Mar 2017 • Thomas E. Potok, Catherine Schuman, Steven R. Young, Robert M. Patton, Federico Spedalieri, Jeremy Liu, Ke-Thia Yao, Garrett Rose, Gangotree Chakma
Current Deep Learning approaches have been very successful using convolutional neural networks (CNN) trained on large graphical processing units (GPU)-based computers.