no code implementations • 13 Dec 2023 • Tanya Akumu, Celia Cintas, Girmaw Abebe Tadesse, Adebayo Oshingbesan, Skyler Speakman, Edward McFowland III
The representations of the activation space of deep neural networks (DNNs) are widely utilized for tasks like natural language processing, anomaly detection and speech recognition.
1 code implementation • 5 Dec 2023 • Miriam Rateike, Celia Cintas, John Wamburu, Tanya Akumu, Skyler Speakman
We introduce a weakly supervised auditing technique using a subset scanning approach to detect anomalous patterns in LLM activations from pre-trained models.
1 code implementation • 18 Aug 2023 • Thorsten Kalb, Kaisar Kushibar, Celia Cintas, Karim Lekadir, Oliver Diaz, Richard Osuala
Addressing fairness in lesion classification from dermatological images is crucial due to variations in how skin diseases manifest across skin tones.
no code implementations • 11 Aug 2023 • Karim Lekadir, Aasa Feragen, Abdul Joseph Fofanah, Alejandro F Frangi, Alena Buyx, Anais Emelie, Andrea Lara, Antonio R Porras, An-Wen Chan, Arcadi Navarro, Ben Glocker, Benard O Botwe, Bishesh Khanal, Brigit Beger, Carol C Wu, Celia Cintas, Curtis P Langlotz, Daniel Rueckert, Deogratias Mzurikwao, Dimitrios I Fotiadis, Doszhan Zhussupov, Enzo Ferrante, Erik Meijering, Eva Weicken, Fabio A González, Folkert W Asselbergs, Fred Prior, Gabriel P Krestin, Gary Collins, Geletaw S Tegenaw, Georgios Kaissis, Gianluca Misuraca, Gianna Tsakou, Girish Dwivedi, Haridimos Kondylakis, Harsha Jayakody, Henry C Woodruf, Horst Joachim Mayer, Hugo JWL Aerts, Ian Walsh, Ioanna Chouvarda, Irène Buvat, Isabell Tributsch, Islem Rekik, James Duncan, Jayashree Kalpathy-Cramer, Jihad Zahir, Jinah Park, John Mongan, Judy W Gichoya, Julia A Schnabel, Kaisar Kushibar, Katrine Riklund, Kensaku MORI, Kostas Marias, Lameck M Amugongo, Lauren A Fromont, Lena Maier-Hein, Leonor Cerdá Alberich, Leticia Rittner, Lighton Phiri, Linda Marrakchi-Kacem, Lluís Donoso-Bach, Luis Martí-Bonmatí, M Jorge Cardoso, Maciej Bobowicz, Mahsa Shabani, Manolis Tsiknakis, Maria A Zuluaga, Maria Bielikova, Marie-Christine Fritzsche, Marina Camacho, Marius George Linguraru, Markus Wenzel, Marleen de Bruijne, Martin G Tolsgaard, Marzyeh Ghassemi, Md Ashrafuzzaman, Melanie Goisauf, Mohammad Yaqub, Mónica Cano Abadía, Mukhtar M E Mahmoud, Mustafa Elattar, Nicola Rieke, Nikolaos Papanikolaou, Noussair Lazrak, Oliver Díaz, Olivier Salvado, Oriol Pujol, Ousmane Sall, Pamela Guevara, Peter Gordebeke, Philippe Lambin, Pieta Brown, Purang Abolmaesumi, Qi Dou, Qinghua Lu, Richard Osuala, Rose Nakasi, S Kevin Zhou, Sandy Napel, Sara Colantonio, Shadi Albarqouni, Smriti Joshi, Stacy Carter, Stefan Klein, Steffen E Petersen, Susanna Aussó, Suyash Awate, Tammy Riklin Raviv, Tessa Cook, Tinashe E M Mutsvangwa, Wendy A Rogers, Wiro J Niessen, Xènia Puig-Bosch, Yi Zeng, Yunusa G Mohammed, Yves Saint James Aquino, Zohaib Salahuddin, Martijn P A Starmans
This work describes the FUTURE-AI guideline as the first international consensus framework for guiding the development and deployment of trustworthy AI tools in healthcare.
no code implementations • 20 Jan 2023 • Girmaw Abebe Tadesse, Jannis Born, Celia Cintas, William Ogallo, Dmitry Zubarev, Matteo Manica, Komminist Weldemariam
To this end, we propose a framework for Multi-level Performance Evaluation of Generative mOdels (MPEGO), which could be employed across different domains.
no code implementations • 8 Mar 2022 • Girmaw Abebe Tadesse, William Ogallo, Celia Cintas, Skyler Speakman
Existing feature selection techniques for tabular data often involve fitting a particular model in order to select important features.
no code implementations • 1 Mar 2022 • Celia Cintas, Payel Das, Brian Quanz, Girmaw Abebe Tadesse, Skyler Speakman, Pin-Yu Chen
We propose group-based subset scanning to identify, quantify, and characterize creative processes by detecting a subset of anomalous node-activations in the hidden layers of the generative models.
no code implementations • 26 May 2021 • Celia Cintas, Skyler Speakman, Girmaw Abebe Tadesse, Victor Akinwande, Edward McFowland III, Komminist Weldemariam
Generative Adversarial Networks (GANs) have recently achieved unprecedented success in photo-realistic image synthesis from low-dimensional random noise.
no code implementations • 24 May 2021 • Hannah Kim, Girmaw Abebe Tadesse, Celia Cintas, Skyler Speakman, Kush Varshney
Current skin disease models could make incorrect inferences for test samples from different hardware devices and clinical settings or unknown disease samples, which are out-of-distribution (OOD) from the training samples.
no code implementations • 1 Apr 2021 • Celia Cintas, Payel Das, Brian Quanz, Skyler Speakman, Victor Akinwande, Pin-Yu Chen
We propose group-based subset scanning to quantify, detect, and characterize creative processes by detecting a subset of anomalous node-activations in the hidden layers of generative models.
no code implementations • 25 Nov 2020 • Girmaw Abebe Tadesse, Celia Cintas, Skyler Speakman, Komminist Weldemariam
Existing datasets available to address crucial problems, such as child mortality and family planning discontinuation in developing countries, are not ample for data-driven approaches.
1 code implementation • 13 Feb 2020 • Victor Akinwande, Celia Cintas, Skyler Speakman, Srihari Sridharan
Audio processing models based on deep neural networks are susceptible to adversarial attacks even when the adversarial audio waveform is 99. 9% similar to a benign sample.
no code implementations • ICLR 2020 • Skyler Speakman, Celia Cintas, Victor Akinwande, Srihari Sridharan, Edward McFowland III
This work introduces ``Subset Scanning methods from the anomalous pattern detection domain to the task of detecting anomalous inputs to neural networks.
no code implementations • 9 Nov 2019 • Reginald Bryant, Celia Cintas, Isaac Wambugu, Andrew Kinai, Komminist Weldemariam
Bias in data can have unintended consequences that propagate to the design, development, and deployment of machine learning models.
no code implementations • 29 Oct 2019 • Newton M. Kinyanjui, Timothy Odonga, Celia Cintas, Noel C. F. Codella, Rameswar Panda, Prasanna Sattigeri, Kush R. Varshney
We find that the majority of the data in the the two datasets have ITA values between 34. 5{\deg} and 48{\deg}, which are associated with lighter skin, and is consistent with under-representation of darker skinned populations in these datasets.
4 code implementations • 3 Aug 2019 • Daniel Omeiza, Skyler Speakman, Celia Cintas, Komminist Weldermariam
With the intention to create an enhanced visual explanation in terms of visual sharpness, object localization and explaining multiple occurrences of objects in a single image, we present Smooth Grad-CAM++ \footnote{Simple demo: http://35. 238. 22. 135:5000/}, a technique that combines methods from two other recent techniques---SMOOTHGRAD and Grad-CAM++.