Search Results for author: Cem Anil

Found 12 papers, 8 papers with code

Connecting the Dots: LLMs can Infer and Verbalize Latent Structure from Disparate Training Data

1 code implementation20 Jun 2024 Johannes Treutlein, Dami Choi, Jan Betley, Cem Anil, Samuel Marks, Roger Baker Grosse, Owain Evans

As a step towards answering this question, we study inductive out-of-context reasoning (OOCR), a type of generalization in which LLMs infer latent information from evidence distributed across training documents and apply it to downstream tasks without in-context learning.

In-Context Learning

Studying Large Language Model Generalization with Influence Functions

2 code implementations7 Aug 2023 Roger Grosse, Juhan Bae, Cem Anil, Nelson Elhage, Alex Tamkin, Amirhossein Tajdini, Benoit Steiner, Dustin Li, Esin Durmus, Ethan Perez, Evan Hubinger, Kamilė Lukošiūtė, Karina Nguyen, Nicholas Joseph, Sam McCandlish, Jared Kaplan, Samuel R. Bowman

When trying to gain better visibility into a machine learning model in order to understand and mitigate the associated risks, a potentially valuable source of evidence is: which training examples most contribute to a given behavior?

counterfactual Language Modelling +2

Path Independent Equilibrium Models Can Better Exploit Test-Time Computation

no code implementations18 Nov 2022 Cem Anil, Ashwini Pokle, Kaiqu Liang, Johannes Treutlein, Yuhuai Wu, Shaojie Bai, Zico Kolter, Roger Grosse

Designing networks capable of attaining better performance with an increased inference budget is important to facilitate generalization to harder problem instances.

Exploring Length Generalization in Large Language Models

no code implementations11 Jul 2022 Cem Anil, Yuhuai Wu, Anders Andreassen, Aitor Lewkowycz, Vedant Misra, Vinay Ramasesh, Ambrose Slone, Guy Gur-Ari, Ethan Dyer, Behnam Neyshabur

The ability to extrapolate from short problem instances to longer ones is an important form of out-of-distribution generalization in reasoning tasks, and is crucial when learning from datasets where longer problem instances are rare.

Automated Theorem Proving In-Context Learning +1

Learning to Give Checkable Answers with Prover-Verifier Games

no code implementations27 Aug 2021 Cem Anil, Guodong Zhang, Yuhuai Wu, Roger Grosse

We develop instantiations of the PVG for two algorithmic tasks, and show that in practice, the verifier learns a robust decision rule that is able to receive useful and reliable information from an untrusted prover.

Learning to Elect

no code implementations NeurIPS 2021 Cem Anil, Xuchan Bao

Voting systems have a wide range of applications including recommender systems, web search, product design and elections.

Recommendation Systems

TimbreTron: A WaveNet(CycleGAN(CQT(Audio))) Pipeline for Musical Timbre Transfer

1 code implementation ICLR 2019 Sicong Huang, Qiyang Li, Cem Anil, Xuchan Bao, Sageev Oore, Roger B. Grosse

In this work, we address the problem of musical timbre transfer, where the goal is to manipulate the timbre of a sound sample from one instrument to match another instrument while preserving other musical content, such as pitch, rhythm, and loudness.

Style Transfer

Sorting out Lipschitz function approximation

1 code implementation13 Nov 2018 Cem Anil, James Lucas, Roger Grosse

We identify a necessary property for such an architecture: each of the layers must preserve the gradient norm during backpropagation.

Adversarial Robustness Generalization Bounds

Cannot find the paper you are looking for? You can Submit a new open access paper.