no code implementations • 15 Jun 2022 • Jack FitzGerald, Shankar Ananthakrishnan, Konstantine Arkoudas, Davide Bernardi, Abhishek Bhagia, Claudio Delli Bovi, Jin Cao, Rakesh Chada, Amit Chauhan, Luoxin Chen, Anurag Dwarakanath, Satyam Dwivedi, Turan Gojayev, Karthik Gopalakrishnan, Thomas Gueudre, Dilek Hakkani-Tur, Wael Hamza, Jonathan Hueser, Kevin Martin Jose, Haidar Khan, Beiye Liu, Jianhua Lu, Alessandro Manzotti, Pradeep Natarajan, Karolina Owczarzak, Gokmen Oz, Enrico Palumbo, Charith Peris, Chandana Satya Prakash, Stephen Rawls, Andy Rosenbaum, Anjali Shenoy, Saleh Soltan, Mukund Harakere Sridhar, Liz Tan, Fabian Triefenbach, Pan Wei, Haiyang Yu, Shuai Zheng, Gokhan Tur, Prem Natarajan
We present results from a large-scale experiment on pretraining encoders with non-embedding parameter counts ranging from 700M to 9. 3B, their subsequent distillation into smaller models ranging from 17M-170M parameters, and their application to the Natural Language Understanding (NLU) component of a virtual assistant system.
Cross-Lingual Natural Language Inference
Intent Classification
+2
no code implementations • 26 May 2022 • Jimit Majmudar, Christophe Dupuy, Charith Peris, Sami Smaili, Rahul Gupta, Richard Zemel
Recent large-scale natural language processing (NLP) systems use a pre-trained Large Language Model (LLM) on massive and diverse corpora as a headstart.
2 code implementations • 18 Apr 2022 • Jack FitzGerald, Christopher Hench, Charith Peris, Scott Mackie, Kay Rottmann, Ana Sanchez, Aaron Nash, Liam Urbach, Vishesh Kakarala, Richa Singh, Swetha Ranganath, Laurie Crist, Misha Britan, Wouter Leeuwis, Gokhan Tur, Prem Natarajan
We present the MASSIVE dataset--Multilingual Amazon Slu resource package (SLURP) for Slot-filling, Intent classification, and Virtual assistant Evaluation.
Ranked #1 on
Slot Filling
on MASSIVE
no code implementations • ICON 2020 • Olga Golovneva, Charith Peris
In this paper, we present our results on boosting NLU model performance through training data augmentation using a sequential generative adversarial network (GAN).
no code implementations • ICON 2020 • Charith Peris, Gokmen Oz, Khadige Abboud, Venkata sai Varada, Prashan Wanigasekara, Haidar Khan
For IC and NER multi-task experiments, when evaluating on the mismatched test set, we see improvements across all domains in German and in 17 out of 19 domains in Portuguese (improvements based on change in SeMER scores).
Abstractive Text Summarization
Automatic Speech Recognition
+5
no code implementations • WS 2020 • Venkat Varada, Charith Peris, Yangsook Park, Christopher Dipersio
One of the core components of voice assistants is the Natural Language Understanding (NLU) model.