1 code implementation • 11 Jul 2023 • Tiffany J. Callahan, Ignacio J. Tripodi, Adrianne L. Stefanski, Luca Cappelletti, Sanya B. Taneja, Jordan M. Wyrwa, Elena Casiraghi, Nicolas A. Matentzoglu, Justin Reese, Jonathan C. Silverstein, Charles Tapley Hoyt, Richard D. Boyce, Scott A. Malec, Deepak R. Unni, Marcin P. Joachimiak, Peter N. Robinson, Christopher J. Mungall, Emanuele Cavalleri, Tommaso Fontana, Giorgio Valentini, Marco Mesiti, Lucas A. Gillenwater, Brook Santangelo, Nicole A. Vasilevsky, Robert Hoehndorf, Tellen D. Bennett, Patrick B. Ryan, George Hripcsak, Michael G. Kahn, Michael Bada, William A. Baumgartner Jr, Lawrence E. Hunter
Translational research requires data at multiple scales of biological organization.
no code implementations • 27 Dec 2022 • Sebastian Lobentanzer, Patrick Aloy, Jan Baumbach, Balazs Bohar, Pornpimol Charoentong, Katharina Danhauser, Tunca Doğan, Johann Dreo, Ian Dunham, Adrià Fernandez-Torras, Benjamin M. Gyori, Michael Hartung, Charles Tapley Hoyt, Christoph Klein, Tamas Korcsmaros, Andreas Maier, Matthias Mann, David Ochoa, Elena Pareja-Lorente, Ferdinand Popp, Martin Preusse, Niklas Probul, Benno Schwikowski, Bünyamin Sen, Maximilian T. Strauss, Denes Turei, Erva Ulusoy, Judith Andrea Heidrun Wodke, Julio Saez-Rodriguez
Standardising the representation of biomedical knowledge among all researchers is an insurmountable task, hindering the effectiveness of many computational methods.
no code implementations • 24 Oct 2022 • Sara Mohammad-Taheri, Vartika Tewari, Rohan Kapre, Ehsan Rahiminasab, Karen Sachs, Charles Tapley Hoyt, Jeremy Zucker, Olga Vitek
Therefore, designing an experiment based on a well-chosen subset of network components can increase estimation accuracy, and reduce experimental and computational costs.
2 code implementations • 14 Mar 2022 • Charles Tapley Hoyt, Max Berrendorf, Mikhail Galkin, Volker Tresp, Benjamin M. Gyori
The link prediction task on knowledge graphs without explicit negative triples in the training data motivates the usage of rank-based metrics.
1 code implementation • 3 Mar 2022 • Mikhail Galkin, Max Berrendorf, Charles Tapley Hoyt
An emerging trend in representation learning over knowledge graphs (KGs) moves beyond transductive link prediction tasks over a fixed set of known entities in favor of inductive tasks that imply training on one graph and performing inference over a new graph with unseen entities.
Ranked #1 on Inductive Link Prediction on ILPC22-Small
2 code implementations • 10 Feb 2022 • Benedek Rozemberczki, Charles Tapley Hoyt, Anna Gogleva, Piotr Grabowski, Klas Karis, Andrej Lamov, Andriy Nikolov, Sebastian Nilsson, Michael Ughetto, Yu Wang, Tyler Derr, Benjamin M Gyori
In this paper, we introduce ChemicalX, a PyTorch-based deep learning library designed for providing a range of state of the art models to solve the drug pair scoring task.
2 code implementations • 17 May 2021 • Stephen Bonner, Ian P Barrett, Cheng Ye, Rowan Swiers, Ola Engkvist, Charles Tapley Hoyt, William L Hamilton
Knowledge Graphs (KG) and associated Knowledge Graph Embedding (KGE) models have recently begun to be explored in the context of drug discovery and have the potential to assist in key challenges such as target identification.
2 code implementations • 19 Feb 2021 • Stephen Bonner, Ian P Barrett, Cheng Ye, Rowan Swiers, Ola Engkvist, Andreas Bender, Charles Tapley Hoyt, William L Hamilton
We aim to help guide machine learning and KG practitioners who are interested in applying new techniques to the drug discovery field, but who may be unfamiliar with the relevant data sources.
1 code implementation • 12 Feb 2021 • Sara Mohammad-Taheri, Jeremy Zucker, Charles Tapley Hoyt, Karen Sachs, Vartika Tewari, Robert Ness, and Olga Vitek
This has limited the use of LVMs for causal inference in biomolecular pathways.
1 code implementation • 13 Jan 2021 • Jeremy Zucker, Kaushal Paneri, Sara Mohammad-Taheri, Somya Bhargava, Pallavi Kolambkar, Craig Bakker, Jeremy Teuton, Charles Tapley Hoyt, Kristie Oxford, Robert Ness, Olga Vitek
This manuscript proposes a general approach for querying a causal biological knowledge graph, and converting the qualitative result into a quantitative structural causal model that can learn from data to answer the question.
2 code implementations • 28 Jul 2020 • Mehdi Ali, Max Berrendorf, Charles Tapley Hoyt, Laurent Vermue, Sahand Sharifzadeh, Volker Tresp, Jens Lehmann
Recently, knowledge graph embeddings (KGEs) received significant attention, and several software libraries have been developed for training and evaluating KGEs.
Ranked #1 on Link Prediction on WN18 (training time (s) metric)
2 code implementations • 23 Jun 2020 • Mehdi Ali, Max Berrendorf, Charles Tapley Hoyt, Laurent Vermue, Mikhail Galkin, Sahand Sharifzadeh, Asja Fischer, Volker Tresp, Jens Lehmann
The heterogeneity in recently published knowledge graph embedding models' implementations, training, and evaluation has made fair and thorough comparisons difficult.
1 code implementation • 15 Jun 2020 • Jeremy Leipzig, Daniel Nüst, Charles Tapley Hoyt, Stian Soiland-Reyes, Karthik Ram, Jane Greenberg
Reproducible computational research (RCR) is the keystone of the scientific method for in silico analyses, packaging the transformation of raw data to published results.
Digital Libraries Software Engineering
1 code implementation • 28 Jan 2020 • Mehdi Ali, Hajira Jabeen, Charles Tapley Hoyt, Jens Lehman
Therefore, we present the KEEN Universe, an ecosystem for knowledge graph embeddings that we have developed with a strong focus on reproducibility and transferability.