Search Results for author: Cheng Ouyang

Found 13 papers, 7 papers with code

Causality-inspired Single-source Domain Generalization for Medical Image Segmentation

no code implementations24 Nov 2021 Cheng Ouyang, Chen Chen, Surui Li, Zeju Li, Chen Qin, Wenjia Bai, Daniel Rueckert

In this work, we investigate the single-source domain generalization problem: training a deep network that is robust to unseen domains, under the condition that training data is only available from one source domain, which is common in medical imaging applications.

Data Augmentation Domain Generalization +2

Cooperative Training and Latent Space Data Augmentation for Robust Medical Image Segmentation

1 code implementation2 Jul 2021 Chen Chen, Kerstin Hammernik, Cheng Ouyang, Chen Qin, Wenjia Bai, Daniel Rueckert

In this paper, we present a cooperative framework for training image segmentation models and a latent space augmentation method for generating hard examples.

Data Augmentation Image Reconstruction +2

Unsupervised Multi-modal Style Transfer for Cardiac MR Segmentation

no code implementations20 Aug 2019 Chen Chen, Cheng Ouyang, Giacomo Tarroni, Jo Schlemper, Huaqi Qiu, Wenjia Bai, Daniel Rueckert

In this work, we present a fully automatic method to segment cardiac structures from late-gadolinium enhanced (LGE) images without using labelled LGE data for training, but instead by transferring the anatomical knowledge and features learned on annotated balanced steady-state free precession (bSSFP) images, which are easier to acquire.

Semantic Segmentation Style Transfer +1

VS-Net: Variable splitting network for accelerated parallel MRI reconstruction

1 code implementation19 Jul 2019 Jinming Duan, Jo Schlemper, Chen Qin, Cheng Ouyang, Wenjia Bai, Carlo Biffi, Ghalib Bello, Ben Statton, Declan P. O'Regan, Daniel Rueckert

In this work, we propose a deep learning approach for parallel magnetic resonance imaging (MRI) reconstruction, termed a variable splitting network (VS-Net), for an efficient, high-quality reconstruction of undersampled multi-coil MR data.

MRI Reconstruction

Data Efficient Unsupervised Domain Adaptation for Cross-Modality Image Segmentation

no code implementations5 Jul 2019 Cheng Ouyang, Konstantinos Kamnitsas, Carlo Biffi, Jinming Duan, Daniel Rueckert

Deep unsupervised domain adaptation (UDA) aims to improve the performance of a deep neural network model on a target domain, using solely unlabelled target domain data and labelled source domain data.

Medical Image Segmentation Semantic Segmentation +1

PnP-AdaNet: Plug-and-Play Adversarial Domain Adaptation Network with a Benchmark at Cross-modality Cardiac Segmentation

2 code implementations19 Dec 2018 Qi Dou, Cheng Ouyang, Cheng Chen, Hao Chen, Ben Glocker, Xiahai Zhuang, Pheng-Ann Heng

In this paper, we propose the PnPAdaNet (plug-and-play adversarial domain adaptation network) for adapting segmentation networks between different modalities of medical images, e. g., MRI and CT. We propose to tackle the significant domain shift by aligning the feature spaces of source and target domains in an unsupervised manner.

Cardiac Segmentation Domain Adaptation +1

Unsupervised Cross-Modality Domain Adaptation of ConvNets for Biomedical Image Segmentations with Adversarial Loss

2 code implementations29 Apr 2018 Qi Dou, Cheng Ouyang, Cheng Chen, Hao Chen, Pheng-Ann Heng

The domain adaptation is more significant while challenging in the field of biomedical image analysis, where cross-modality data have largely different distributions.

Transfer Learning Unsupervised Domain Adaptation

Cannot find the paper you are looking for? You can Submit a new open access paper.