1 code implementation • 26 Sep 2024 • Amita Kamath, Cheng-Yu Hsieh, Kai-Wei Chang, Ranjay Krishna
By training with both, we see improvements on existing benchmarks while simultaneously improving performance on hard positives, indicating a more robust improvement in compositionality.
no code implementations • 9 Jul 2024 • Yu-Guan Hsieh, Cheng-Yu Hsieh, Shih-Ying Yeh, Louis Béthune, Hadi Pour Ansari, Pavan Kumar Anasosalu Vasu, Chun-Liang Li, Ranjay Krishna, Oncel Tuzel, Marco Cuturi
The nodes in GBC are created using, in a first stage, object detection and dense captioning tools nested recursively to uncover and describe entity nodes, further linked together in a second stage by highlighting, using new types of nodes, compositions and relations among entities.
1 code implementation • 9 Jul 2024 • Yung-Sung Chuang, Linlu Qiu, Cheng-Yu Hsieh, Ranjay Krishna, Yoon Kim, James Glass
We find that a linear classifier based on these lookback ratio features is as effective as a richer detector that utilizes the entire hidden states of an LLM or a text-based entailment model.
no code implementations • 23 Jun 2024 • Cheng-Yu Hsieh, Yung-Sung Chuang, Chun-Liang Li, Zifeng Wang, Long T. Le, Abhishek Kumar, James Glass, Alexander Ratner, Chen-Yu Lee, Ranjay Krishna, Tomas Pfister
Large language models (LLMs), even when specifically trained to process long input contexts, struggle to capture relevant information located in the middle of their input.
2 code implementations • 17 Jun 2024 • Jeffrey Li, Alex Fang, Georgios Smyrnis, Maor Ivgi, Matt Jordan, Samir Gadre, Hritik Bansal, Etash Guha, Sedrick Keh, Kushal Arora, Saurabh Garg, Rui Xin, Niklas Muennighoff, Reinhard Heckel, Jean Mercat, Mayee Chen, Suchin Gururangan, Mitchell Wortsman, Alon Albalak, Yonatan Bitton, Marianna Nezhurina, Amro Abbas, Cheng-Yu Hsieh, Dhruba Ghosh, Josh Gardner, Maciej Kilian, HANLIN ZHANG, Rulin Shao, Sarah Pratt, Sunny Sanyal, Gabriel Ilharco, Giannis Daras, Kalyani Marathe, Aaron Gokaslan, Jieyu Zhang, Khyathi Chandu, Thao Nguyen, Igor Vasiljevic, Sham Kakade, Shuran Song, Sujay Sanghavi, Fartash Faghri, Sewoong Oh, Luke Zettlemoyer, Kyle Lo, Alaaeldin El-Nouby, Hadi Pouransari, Alexander Toshev, Stephanie Wang, Dirk Groeneveld, Luca Soldaini, Pang Wei Koh, Jenia Jitsev, Thomas Kollar, Alexandros G. Dimakis, Yair Carmon, Achal Dave, Ludwig Schmidt, Vaishaal Shankar
We introduce DataComp for Language Models (DCLM), a testbed for controlled dataset experiments with the goal of improving language models.
1 code implementation • 7 Jun 2024 • Scott Geng, Cheng-Yu Hsieh, Vivek Ramanujan, Matthew Wallingford, Chun-Liang Li, Pang Wei Koh, Ranjay Krishna
What additional value does the intermediate generator provide over directly training on relevant parts of the upstream data?
1 code implementation • 8 Oct 2023 • Lu Yin, You Wu, Zhenyu Zhang, Cheng-Yu Hsieh, Yaqing Wang, Yiling Jia, Gen Li, Ajay Jaiswal, Mykola Pechenizkiy, Yi Liang, Michael Bendersky, Zhangyang Wang, Shiwei Liu
Large Language Models (LLMs), renowned for their remarkable performance across diverse domains, present a challenge when it comes to practical deployment due to their colossal model size.
no code implementations • 1 Aug 2023 • Cheng-Yu Hsieh, Si-An Chen, Chun-Liang Li, Yasuhisa Fujii, Alexander Ratner, Chen-Yu Lee, Ranjay Krishna, Tomas Pfister
Today, large language models (LLMs) are taught to use new tools by providing a few demonstrations of the tool's usage.
1 code implementation • NeurIPS 2023 • Cheng-Yu Hsieh, Jieyu Zhang, Zixian Ma, Aniruddha Kembhavi, Ranjay Krishna
In the last year alone, a surge of new benchmarks to measure compositional understanding of vision-language models have permeated the machine learning ecosystem.
1 code implementation • 3 May 2023 • Cheng-Yu Hsieh, Chun-Liang Li, Chih-Kuan Yeh, Hootan Nakhost, Yasuhisa Fujii, Alexander Ratner, Ranjay Krishna, Chen-Yu Lee, Tomas Pfister
Third, we reduce both the model size and the amount of data required to outperform LLMs; our finetuned 770M T5 model outperforms the few-shot prompted 540B PaLM model using only 80% of available data on a benchmark, whereas standard finetuning the same T5 model struggles to match even by using 100% of the dataset.
no code implementations • 25 May 2022 • Jieyu Zhang, Haonan Wang, Cheng-Yu Hsieh, Alexander Ratner
Programmatic Weak Supervision (PWS) aggregates the source votes of multiple weak supervision sources into probabilistic training labels, which are in turn used to train an end model.
1 code implementation • 2 Mar 2022 • Cheng-Yu Hsieh, Jieyu Zhang, Alexander Ratner
Weak Supervision (WS) techniques allow users to efficiently create large training datasets by programmatically labeling data with heuristic sources of supervision.
1 code implementation • 11 Feb 2022 • Jieyu Zhang, Cheng-Yu Hsieh, Yue Yu, Chao Zhang, Alexander Ratner
Labeling training data has become one of the major roadblocks to using machine learning.
no code implementations • 29 Sep 2021 • Cheng-Yu Hsieh, Wei-I Lin, Miao Xu, Gang Niu, Hsuan-Tien Lin, Masashi Sugiyama
The goal of multi-label learning (MLL) is to associate a given instance with its relevant labels from a set of concepts.
no code implementations • ICLR 2021 • Cheng-Yu Hsieh, Chih-Kuan Yeh, Xuanqing Liu, Pradeep Ravikumar, Seungyeon Kim, Sanjiv Kumar, Cho-Jui Hsieh
In this paper, we establish a novel set of evaluation criteria for such feature based explanations by robustness analysis.
1 code implementation • NeurIPS 2019 • Chih-Kuan Yeh, Cheng-Yu Hsieh, Arun Suggala, David I. Inouye, Pradeep K. Ravikumar
We analyze optimal explanations with respect to both these measures, and while the optimal explanation for sensitivity is a vacuous constant explanation, the optimal explanation for infidelity is a novel combination of two popular explanation methods.
no code implementations • ICLR Workshop LLD 2019 • Cheng-Yu Hsieh, Miao Xu, Gang Niu, Hsuan-Tien Lin, Masashi Sugiyama
To address the need, we propose a special weakly supervised MLL problem that not only focuses on the situation of limited fine-grained supervision but also leverages the hierarchical relationship between the coarse concepts and the fine-grained ones.
2 code implementations • 27 Jan 2019 • Chih-Kuan Yeh, Cheng-Yu Hsieh, Arun Sai Suggala, David I. Inouye, Pradeep Ravikumar
We analyze optimal explanations with respect to both these measures, and while the optimal explanation for sensitivity is a vacuous constant explanation, the optimal explanation for infidelity is a novel combination of two popular explanation methods.