no code implementations • 13 Oct 2022 • Matt Deitke, Dhruv Batra, Yonatan Bisk, Tommaso Campari, Angel X. Chang, Devendra Singh Chaplot, Changan Chen, Claudia Pérez D'Arpino, Kiana Ehsani, Ali Farhadi, Li Fei-Fei, Anthony Francis, Chuang Gan, Kristen Grauman, David Hall, Winson Han, Unnat Jain, Aniruddha Kembhavi, Jacob Krantz, Stefan Lee, Chengshu Li, Sagnik Majumder, Oleksandr Maksymets, Roberto Martín-Martín, Roozbeh Mottaghi, Sonia Raychaudhuri, Mike Roberts, Silvio Savarese, Manolis Savva, Mohit Shridhar, Niko Sünderhauf, Andrew Szot, Ben Talbot, Joshua B. Tenenbaum, Jesse Thomason, Alexander Toshev, Joanne Truong, Luca Weihs, Jiajun Wu
We present a retrospective on the state of Embodied AI research.
1 code implementation • 6 Aug 2021 • Chengshu Li, Fei Xia, Roberto Martín-Martín, Michael Lingelbach, Sanjana Srivastava, Bokui Shen, Kent Vainio, Cem Gokmen, Gokul Dharan, Tanish Jain, Andrey Kurenkov, C. Karen Liu, Hyowon Gweon, Jiajun Wu, Li Fei-Fei, Silvio Savarese
We evaluate the new capabilities of iGibson 2. 0 to enable robot learning of novel tasks, in the hope of demonstrating the potential of this new simulator to support new research in embodied AI.
no code implementations • 6 Aug 2021 • Sanjana Srivastava, Chengshu Li, Michael Lingelbach, Roberto Martín-Martín, Fei Xia, Kent Vainio, Zheng Lian, Cem Gokmen, Shyamal Buch, C. Karen Liu, Silvio Savarese, Hyowon Gweon, Jiajun Wu, Li Fei-Fei
We introduce BEHAVIOR, a benchmark for embodied AI with 100 activities in simulation, spanning a range of everyday household chores such as cleaning, maintenance, and food preparation.
2 code implementations • 5 Dec 2020 • Bokui Shen, Fei Xia, Chengshu Li, Roberto Martín-Martín, Linxi Fan, Guanzhi Wang, Claudia Pérez-D'Arpino, Shyamal Buch, Sanjana Srivastava, Lyne P. Tchapmi, Micael E. Tchapmi, Kent Vainio, Josiah Wong, Li Fei-Fei, Silvio Savarese
We present iGibson 1. 0, a novel simulation environment to develop robotic solutions for interactive tasks in large-scale realistic scenes.
no code implementations • 18 Aug 2020 • Fei Xia, Chengshu Li, Roberto Martín-Martín, Or Litany, Alexander Toshev, Silvio Savarese
To validate our method, we apply ReLMoGen to two types of tasks: 1) Interactive Navigation tasks, navigation problems where interactions with the environment are required to reach the destination, and 2) Mobile Manipulation tasks, manipulation tasks that require moving the robot base.
1 code implementation • 30 Oct 2019 • Fei Xia, William B. Shen, Chengshu Li, Priya Kasimbeg, Micael Tchapmi, Alexander Toshev, Li Fei-Fei, Roberto Martín-Martín, Silvio Savarese
We present Interactive Gibson Benchmark, the first comprehensive benchmark for training and evaluating Interactive Navigation: robot navigation strategies where physical interaction with objects is allowed and even encouraged to accomplish a task.
1 code implementation • 24 Oct 2019 • Chengshu Li, Fei Xia, Roberto Martin-Martin, Silvio Savarese
Different from other HRL solutions, HRL4IN handles the heterogeneous nature of the Interactive Navigation task by creating subgoals in different spaces in different phases of the task.
Hierarchical Reinforcement Learning
reinforcement-learning
+1