1 code implementation • 5 Mar 2025 • Fanwen Wang, Zi Wang, Yan Li, Jun Lyu, Chen Qin, Shuo Wang, Kunyuan Guo, Mengting Sun, Mingkai Huang, Haoyu Zhang, Michael Tänzer, Qirong Li, Xinran Chen, Jiahao Huang, Yinzhe Wu, Kian Anvari Hamedani, Yuntong Lyu, Longyu Sun, Qing Li, Ziqiang Xu, Bingyu Xin, Dimitris N. Metaxas, Narges Razizadeh, Shahabedin Nabavi, George Yiasemis, Jonas Teuwen, Zhenxi Zhang, Sha Wang, Chi Zhang, Daniel B. Ennis, Zhihao Xue, Chenxi Hu, Ruru Xu, Ilkay Oksuz, Donghang Lyu, Yanxin Huang, Xinrui Guo, Ruqian Hao, Jaykumar H. Patel, Guanke Cai, Binghua Chen, Yajing Zhang, Sha Hua, Zhensen Chen, Qi Dou, Xiahai Zhuang, Qian Tao, Wenjia Bai, Jing Qin, He Wang, Claudia Prieto, Michael Markl, Alistair Young, Hao Li, Xihong Hu, Lianmin Wu, Xiaobo Qu, Guang Yang, Chengyan Wang
In addition, through a detailed analysis of the results submitted to the challenge, we have also made several findings, including: 1) adaptive prompt-learning embedding is an effective means for achieving strong generalization in reconstruction models; 2) enhanced data consistency based on physics-informed networks is also an effective pathway toward a universal model; 3) traditional evaluation metrics have limitations when assessing ground-truth references with moderate or lower image quality, highlighting the need for subjective evaluation methods.
1 code implementation • 23 Sep 2024 • Ahjol Senbi, Tianyu Huang, Fei Lyu, Qing Li, Yuhui Tao, Wei Shao, Qiang Chen, Chengyan Wang, Shuo Wang, Tao Zhou, Yizhe Zhang
We name this model EvanySeg (Evaluation of Any Segmentation in Medical Images).
no code implementations • 22 Sep 2024 • Anurag Malyala, Zhenlin Zhang, Chengyan Wang, Chen Qin
Magnetic Resonance Imaging (MRI) is a powerful, non-invasive diagnostic tool; however, its clinical applicability is constrained by prolonged acquisition times.
1 code implementation • 27 Jun 2024 • Zi Wang, Fanwen Wang, Chen Qin, Jun Lyu, Cheng Ouyang, Shuo Wang, Yan Li, Mengyao Yu, Haoyu Zhang, Kunyuan Guo, Zhang Shi, Qirong Li, Ziqiang Xu, Yajing Zhang, Hao Li, Sha Hua, Binghua Chen, Longyu Sun, Mengting Sun, Qin Li, Ying-Hua Chu, Wenjia Bai, Jing Qin, Xiahai Zhuang, Claudia Prieto, Alistair Young, Michael Markl, He Wang, Lianming Wu, Guang Yang, Xiaobo Qu, Chengyan Wang
To the best of our knowledge, the CMRxRecon2024 dataset is the largest and most protocal-diverse publicly available cardiac k-space dataset.
no code implementations • 18 Jun 2024 • Qin Li, Yizhe Zhang, Yan Li, Jun Lyu, Meng Liu, Longyu Sun, Mengting Sun, Qirong Li, Wenyue Mao, Xinran Wu, Yajing Zhang, Yinghua Chu, Shuo Wang, Chengyan Wang
We test state-of-the-art foundation models for medical image segmentation, including the original SAM, medical SAM and SAT models, to evaluate segmentation efficacy across different demographic groups and identify disparities.
no code implementations • 27 May 2024 • Jiahao Huang, Liutao Yang, Fanwen Wang, Yang Nan, Weiwen Wu, Chengyan Wang, Kuangyu Shi, Angelica I. Aviles-Rivero, Carola-Bibiane Schönlieb, Daoqiang Zhang, Guang Yang
In this study, we introduce MambaMIR, an Arbitrary-Masked Mamba-based model with wavelet decomposition for joint medical image reconstruction and uncertainty estimation.
no code implementations • 17 May 2024 • Yirong Zhou, Chengyan Wang, Mengtian Lu, Kunyuan Guo, Zi Wang, Dan Ruan, Rui Guo, Peijun Zhao, Jianhua Wang, Naiming Wu, Jianzhong Lin, Yinyin Chen, Hang Jin, Lianxin Xie, Lilan Wu, Liuhong Zhu, Jianjun Zhou, Congbo Cai, He Wang, Xiaobo Qu
A tight coupling module aligns and fuses CNN and Transformer branch features, enabling SQNet to focus on myocardium regions.
1 code implementation • 1 Apr 2024 • Jun Lyu, Chen Qin, Shuo Wang, Fanwen Wang, Yan Li, Zi Wang, Kunyuan Guo, Cheng Ouyang, Michael Tänzer, Meng Liu, Longyu Sun, Mengting Sun, Qin Li, Zhang Shi, Sha Hua, Hao Li, Zhensen Chen, Zhenlin Zhang, Bingyu Xin, Dimitris N. Metaxas, George Yiasemis, Jonas Teuwen, Liping Zhang, Weitian Chen, Yidong Zhao, Qian Tao, Yanwei Pang, Xiaohan Liu, Artem Razumov, Dmitry V. Dylov, Quan Dou, Kang Yan, Yuyang Xue, Yuning Du, Julia Dietlmeier, Carles Garcia-Cabrera, Ziad Al-Haj Hemidi, Nora Vogt, Ziqiang Xu, Yajing Zhang, Ying-Hua Chu, Weibo Chen, Wenjia Bai, Xiahai Zhuang, Jing Qin, Lianmin Wu, Guang Yang, Xiaobo Qu, He Wang, Chengyan Wang
To address this issue, we organized the Cardiac MRI Reconstruction Challenge (CMRxRecon) in 2023, in collaboration with the 26th International Conference on MICCAI.
1 code implementation • 24 Feb 2024 • Zi Wang, Min Xiao, Yirong Zhou, Chengyan Wang, Naiming Wu, Yi Li, Yiwen Gong, Shufu Chang, Yinyin Chen, Liuhong Zhu, Jianjun Zhou, Congbo Cai, He Wang, Di Guo, Guang Yang, Xiaobo Qu
This challenge necessitates extensive training data in deep learning reconstruction methods.
2 code implementations • 19 Sep 2023 • Chengyan Wang, Jun Lyu, Shuo Wang, Chen Qin, Kunyuan Guo, Xinyu Zhang, Xiaotong Yu, Yan Li, Fanwen Wang, Jianhua Jin, Zhang Shi, Ziqiang Xu, Yapeng Tian, Sha Hua, Zhensen Chen, Meng Liu, Mengting Sun, Xutong Kuang, Kang Wang, Haoran Wang, Hao Li, Yinghua Chu, Guang Yang, Wenjia Bai, Xiahai Zhuang, He Wang, Jing Qin, Xiaobo Qu
However, a limitation of CMR is its slow imaging speed, which causes patient discomfort and introduces artifacts in the images.
1 code implementation • 25 Jul 2023 • Zi Wang, Xiaotong Yu, Chengyan Wang, Weibo Chen, Jiazheng Wang, Ying-Hua Chu, Hongwei Sun, Rushuai Li, Peiyong Li, Fan Yang, Haiwei Han, Taishan Kang, Jianzhong Lin, Chen Yang, Shufu Chang, Zhang Shi, Sha Hua, Yan Li, Juan Hu, Liuhong Zhu, Jianjun Zhou, Meijing Lin, Jiefeng Guo, Congbo Cai, Zhong Chen, Di Guo, Guang Yang, Xiaobo Qu
We demonstrate that training DL models on synthetic data, coupled with enhanced learning techniques, yields in vivo MRI reconstructions comparable to or surpassing those of models trained on matched realistic datasets, reducing the reliance on real-world MRI data by up to 96%.
no code implementations • 20 Oct 2022 • Chen Qian, Haoyu Zhang, Yuncheng Gao, Mingyang Han, Zi Wang, Dan Ruan, Yu Shen, Yaping Wu, Yirong Zhou, Chengyan Wang, Boyu Jiang, Ran Tao, Zhigang Wu, Jiazheng Wang, Liuhong Zhu, Yi Guo, Taishan Kang, Jianzhong Lin, Tao Gong, Chen Yang, Guoqiang Fei, Meijin Lin, Di Guo, Jianjun Zhou, Meiyun Wang, Xiaobo Qu
In conclusion, PIDD presents a novel deep learning framework by exploiting the power of MRI physics, providing a cost-effective and explainable way to break the data bottleneck in deep learning medical imaging.
1 code implementation • 12 Oct 2022 • Shuo Wang, Chen Qin, Chengyan Wang, Kang Wang, Haoran Wang, Chen Chen, Cheng Ouyang, Xutong Kuang, Chengliang Dai, Yuanhan Mo, Zhang Shi, Chenchen Dai, Xinrong Chen, He Wang, Wenjia Bai
The quality of cardiac magnetic resonance (CMR) imaging is susceptible to respiratory motion artifacts.
1 code implementation • CVPR 2022 • Guangyuan Li, Jun Lv, Yapeng Tian, Qi Dou, Chengyan Wang, Chenliang Xu, Jing Qin
However, existing methods still have two shortcomings: (1) they neglect that the multi-contrast features at different scales contain different anatomical details and hence lack effective mechanisms to match and fuse these features for better reconstruction; and (2) they are still deficient in capturing long-range dependencies, which are essential for the regions with complicated anatomical structures.
no code implementations • 21 Jul 2021 • Guangyuan Li, Jun Lv, Xiangrong Tong, Chengyan Wang, Guang Yang
Magnetic resonance imaging (MRI) is an important medical imaging modality, but its acquisition speed is quite slow due to the physiological limitations.
1 code implementation • 17 May 2021 • Jun Lv, Guangyuan Li, Xiangrong Tong, Weibo Chen, Jiahao Huang, Chengyan Wang, Guang Yang
The transfer learning results for the knee and liver were superior to those of the PI-GAN model trained with its own dataset using a smaller number of training cases.