Search Results for author: Chenzhuang Du

Found 9 papers, 2 papers with code

What Makes for Robust Multi-Modal Models in the Face of Missing Modalities?

no code implementations10 Oct 2023 Siting Li, Chenzhuang Du, Yue Zhao, Yu Huang, Hang Zhao

With the growing success of multi-modal learning, research on the robustness of multi-modal models, especially when facing situations with missing modalities, is receiving increased attention.

Data Augmentation

On Uni-Modal Feature Learning in Supervised Multi-Modal Learning

1 code implementation2 May 2023 Chenzhuang Du, Jiaye Teng, Tingle Li, Yichen Liu, Tianyuan Yuan, Yue Wang, Yang Yuan, Hang Zhao

We abstract the features (i. e. learned representations) of multi-modal data into 1) uni-modal features, which can be learned from uni-modal training, and 2) paired features, which can only be learned from cross-modal interactions.

Intrinsically Motivated Self-supervised Learning in Reinforcement Learning

no code implementations26 Jun 2021 Yue Zhao, Chenzhuang Du, Hang Zhao, Tiejun Li

In vision-based reinforcement learning (RL) tasks, it is prevalent to assign auxiliary tasks with a surrogate self-supervised loss so as to obtain more semantic representations and improve sample efficiency.

Decision Making reinforcement-learning +3

Improving Multi-Modal Learning with Uni-Modal Teachers

no code implementations21 Jun 2021 Chenzhuang Du, Tingle Li, Yichen Liu, Zixin Wen, Tianyu Hua, Yue Wang, Hang Zhao

We name this problem Modality Failure, and hypothesize that the imbalance of modalities and the implicit bias of common objectives in fusion method prevent encoders of each modality from sufficient feature learning.

Image Segmentation Semantic Segmentation

Secure Data Sharing With Flow Model

1 code implementation24 Sep 2020 Chenwei Wu, Chenzhuang Du, Yang Yuan

In the classical multi-party computation setting, multiple parties jointly compute a function without revealing their own input data.

BIG-bench Machine Learning Image Classification +1

Cannot find the paper you are looking for? You can Submit a new open access paper.