no code implementations • 20 Oct 2024 • Xiaowei Chi, Hengyuan Zhang, Chun-Kai Fan, Xingqun Qi, Rongyu Zhang, Anthony Chen, Chi-Min Chan, Wei Xue, Wenhan Luo, Shanghang Zhang, Yike Guo
Yet, applying the world model for accurate video prediction is quite challenging due to the complex and dynamic intentions of the various scenes in practice.
1 code implementation • 4 Sep 2024 • Xinyu Liu, Yingqing He, Lanqing Guo, Xiang Li, Bu Jin, Peng Li, Yan Li, Chi-Min Chan, Qifeng Chen, Wei Xue, Wenhan Luo, Qifeng Liu, Yike Guo
The hierarchical prompts offer both global and local guidance.
1 code implementation • 27 Aug 2024 • Chi-Min Chan, Jianxuan Yu, Weize Chen, Chunyang Jiang, Xinyu Liu, Weijie Shi, Zhiyuan Liu, Wei Xue, Yike Guo
However, configuring an MAS for a task remains challenging, with performance only observable post-execution.
1 code implementation • 19 Aug 2024 • Chunyang Jiang, Chi-Min Chan, Wei Xue, Qifeng Liu, Yike Guo
Large language models (LLMs) have shown remarkable capability in numerous tasks and applications.
1 code implementation • 31 Mar 2024 • Chi-Min Chan, Chunpu Xu, Ruibin Yuan, Hongyin Luo, Wei Xue, Yike Guo, Jie Fu
To this end, we propose learning to Refine Query for Retrieval Augmented Generation (RQ-RAG) in this paper, endeavoring to enhance the model by equipping it with capabilities for explicit rewriting, decomposition, and disambiguation.
1 code implementation • 21 Aug 2023 • Weize Chen, Yusheng Su, Jingwei Zuo, Cheng Yang, Chenfei Yuan, Chi-Min Chan, Heyang Yu, Yaxi Lu, Yi-Hsin Hung, Chen Qian, Yujia Qin, Xin Cong, Ruobing Xie, Zhiyuan Liu, Maosong Sun, Jie zhou
Autonomous agents empowered by Large Language Models (LLMs) have undergone significant improvements, enabling them to generalize across a broad spectrum of tasks.
3 code implementations • 14 Aug 2023 • Chi-Min Chan, Weize Chen, Yusheng Su, Jianxuan Yu, Wei Xue, Shanghang Zhang, Jie Fu, Zhiyuan Liu
Text evaluation has historically posed significant challenges, often demanding substantial labor and time cost.
1 code implementation • 4 Jun 2023 • Yusheng Su, Chi-Min Chan, Jiali Cheng, Yujia Qin, Yankai Lin, Shengding Hu, Zonghan Yang, Ning Ding, Xingzhi Sun, Guotong Xie, Zhiyuan Liu, Maosong Sun
Our investigations reveal that model scaling (1) mitigates the effects of the positions of tunable parameters on performance, and (2) enables tuning methods to achieve performance comparable to full-parameter fine-tuning by optimizing fewer tunable parameters.
1 code implementation • 28 May 2023 • Chaojun Xiao, Zhengyan Zhang, Xu Han, Chi-Min Chan, Yankai Lin, Zhiyuan Liu, Xiangyang Li, Zhonghua Li, Zhao Cao, Maosong Sun
By inserting document plugins into the backbone PTM for downstream tasks, we can encode a document one time to handle multiple tasks, which is more efficient than conventional encoding-task coupling methods that simultaneously encode documents and input queries using task-specific encoders.
1 code implementation • 14 Mar 2022 • Ning Ding, Yujia Qin, Guang Yang, Fuchao Wei, Zonghan Yang, Yusheng Su, Shengding Hu, Yulin Chen, Chi-Min Chan, Weize Chen, Jing Yi, Weilin Zhao, Xiaozhi Wang, Zhiyuan Liu, Hai-Tao Zheng, Jianfei Chen, Yang Liu, Jie Tang, Juanzi Li, Maosong Sun
This necessitates a new branch of research focusing on the parameter-efficient adaptation of PLMs, dubbed as delta tuning in this paper.
1 code implementation • NAACL 2022 • Yusheng Su, Xiaozhi Wang, Yujia Qin, Chi-Min Chan, Yankai Lin, Huadong Wang, Kaiyue Wen, Zhiyuan Liu, Peng Li, Juanzi Li, Lei Hou, Maosong Sun, Jie zhou
To explore whether we can improve PT via prompt transfer, we empirically investigate the transferability of soft prompts across different downstream tasks and PLMs in this work.